Final Project Report: Gypsum Soils Analysis Technical Conditions

2005-UNLV-609F

By

Brenda J. Buck¹, Colin R. Robins^{1,2}, and Amanda J. Williams^{1,3}

¹Department of Geoscience, University of Nevada Las Vegas 4505 Maryland Parkway, Las Vegas NV 891540-4010 <u>buckb@unlv.nevada.edu</u>

> Department of Geology, Macalester College 1600 Grand Avenue, St. Paul MN 55105

> > ³School of Life Sciences, UNLV 4505 Maryland Parkway Las Vegas NV 89154

Prepared for:

Clark County, Nevada Desert Conservation Program 333 North Rancho Drive, Suite 625 Las Vegas, NV 89106 Contact: Sue Wainscott 702-455-3859

This work was supported by the Clark County Desert Conservation Program and funded by Southern Nevada Public Lands Management Act as project # 2005-UNLV-609F to further implement or develop the Clark County Multiple Species Habitat Conservation Plan.

[This page intentionally left blank]

Acknowledgements

This work was supported by the Clark County Desert Conservation Program (CCDCP) and funded by Southern Nevada Public Lands Management Act as project # 2005-UNLV-609F to further implement or develop the Clark County Multiple Species Habitat Conservation Plan.

We thank Sue Wainscott (CCDCP) for her management of this project, and Sonja Kokos for her guidance during this project's early stages. We also thank Lee Bice (CCDCP) for his GIS data management suggestions. We are indebted to both Clark County and the Bureau of Land Management for granting field permits to conduct this study, and we are grateful to HRA Archaeology and Suzanne Eskenazi for conducting archaeological site assessments.

We thank Yuanxin Teng and the UNLV Environmental Soil Analysis Laboratory (ESAL) for the patience and hard work involved in the analysis of over 500 samples, and we recognize Dirk Goosens and Deborah Soukup for their sound advice regarding laboratory method improvements for arid soils.

Soil profile descriptions, surface characterization, sampling, and data entry were made possible through the efforts of Erik Baker, Robert Davis, Laura Eaton, Rhonda Fairchild, Genaro Martínez Gutiérrez, Praveen Raj, Michelle Stropky, and Nick Wahnefried. We thank Nora Rose Hencir for her hard work on the extraction, treatment, and XRD analysis of phyllosilicate minerals.

This project also benefitted from technical GIS and/or mapping support from Brett McLaurin, P. Kyle House, Douglas J. Merkler, Rebecca Huntoon, and Haroon Stephen.

Finally, we thank Elizabeth Smith, Maria Figueroa, and Kathryn Birgy of the UNLV Department of Geoscience for their administrative assistance, and we recognize both the Macalester College Geology Department and the UNLV Department of Geoscience for supporting our research.

[This page intentionally left blank]

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
PURPOSE	10
Surficial Geology	10
Soli Chemistry	
SUBFACE SOIL CHEMISTRY AND CHARACTERISTICS	
OVERALL CONCLUSIONS	
RECOMMENDATIONS	
KECOMMENDA HONS	12
CHAPTER 1: PROJECT INTRODUCTION	
DESCRIPTION OF THE PROJECT	14
BACKGROUND & NEED FOR THE PROJECT	14
MANAGEMENT ACTIONS ADDRESSED	
STUDY AREA LOCATIONS	
GOALS AND OBJECTIVES OF THE PROJECT	
METHODS	
References	20
CHAPTER 2: MAPPING: SURFICIAL GEOLOGY, INSOLATION, AND HABITAT CLASSES	
I. Purpose	
II. METHODOLOGY	
Solar Insolation	
Map Unit Nomenclature	25
Habitat Classification Systems	
Statistical Analysis of Map Units	27
III. RESULTS	
A. Surficial Geology of the Coyote Springs Study Area	
Explanation of Coyote Springs Surficial Geologic Map Units	
Photographs of the Coyote Springs Surficial Geologic Map Units	
B. Surficial Geology of the Gold Butte Study Area	
Explanation of Gold Butte Surficial Geologic Map Units	
Photographs of the Gold Butte Surficial Geologic Map Units	
C. Surficial Geology of the Bitter Spring Study Area	
Explanation of the Bitter Spring Surficial Geologic Map Units	
D Additional Data and Statistical Results	
IV DISCUSSION & INTEDDETATION	
Alluvial denosits	
Colluvial deposits	
Folian denosits	73
Plava denosits	
Redrock units	
Frosional units	73
Comparison of Man Units to NRCS Soil Survey	
Man Units as Hahitat	75
Statistics and Other Data	76
V CONCLUSIONS	76
VI RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK	77
References	
CHAPTER 3: SOIL PROFILES & STATISTICS	
I. PURPOSE	81
Ohiective	
Background	
II. METHODOLOGY	82

Soil Profile Descriptions	
Soil Sampling	
Soil Laboratory Analysis	
XRD Analysis	
Grouping Data for Statistical Analysis	
Statistical Methods	
III. RESULTS	
Results of Mann-Whitney Tests	
(i) Buckwheat vs. Non-buckwheat	
(ii) Habitat vs. Potential Habitat	
(iii) Potential Habitat vs. Non Habitat	
(iv) Summary of relative trends	
(v) Buckwheat versus Non-buckwheat – Ca/Mg and K/(Ca+Mg) ratios	
Results of the Spearman rank coefficient tests	
IV. DISCUSSION AND INTERPRETATION	
General Overview	
Coyote Springs Trends	
Gold Butte Trends	
Bitter Spring Trends	
Trends across all study areas (all sites combined)	
Interpretations	
V. CONCLUSIONS	
VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK	
References	
TAPTED A. SURFACE CHARACTERIZATION & STATISTICS	230
IAI TEK 4. SUKTACE CHARACTERIZATION & STATISTICS	
I. PURPOSE	
II. METHODOLOGY	
Surface Categorization & Characterization	
Soil Sampling & Analysis	
Statistical Analysis	241
III. RESULTS	
IV. DISCUSSION	
General Overview	
General Overview Coyote Springs Trends	246 315 315 315
General Overview Coyote Springs Trends Gold Butte Trends	246 315 315 317 317 317 317
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends	246 315 315 315 315 315 315 315 315 316
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined	246 315 315 315 315 315 315 315 316 317
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations	246 315 315 315 315 315 315 316 317 317 317
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V CONCLUSIONS	246 315 315 315 315 315 315 316 317 317 321
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS VI RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK	246 315 315 315 315 315 316 317 317 317 321 322
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK REFERENCES	246 315 315 315 315 315 315 317 317 317 317 317 321 322 322
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK REFERENCES PENDLX: SOIL PROFILE DESCRIPTIONS	246 315 315 315 315 315 315 316 317 317 317 321 322 324 327
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK REFERENCES PPENDIX: SOIL PROFILE DESCRIPTIONS	246 315 315 315 315 315 316 317 317 321 322 324 324 327
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS V. CONCLUSIONS VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK REFERENCES PENDIX: SOIL PROFILE DESCRIPTIONS I. Coyote Springs Soil Profile Descriptions	246 315 315 315 315 315 316 317 317 317 321 322 324 324 327 327
General Overview Coyote Springs Trends Gold Butte Trends Bitter Spring Trends Trends among all study areas combined Interpretations V. CONCLUSIONS V. CONCLUSIONS VI. RECOMMENDATIONS AND COMMENTS FOR FUTURE WORK REFERENCES PPENDIX: SOIL PROFILE DESCRIPTIONS I. COYOTE SPRINGS SOIL PROFILE DESCRIPTIONS II. GOLD BUTTE SOIL PROFILE DESCRIPTIONS	246 315 315 315 315 315 316 317 317 321 322 324 327 327 327

LIST OF FIGURES

FIGURE 1-1. GENERAL LOCATIONS OF THE THREE STUDY AREAS OF GYPSUM SOILS ANALYSIS TECHNICAL CONDITIONS (UNLV-2005-609F). <i>BASE DATA FROM CLARK COUNTY GISMO AND THE USGS</i>
FIGURE 2-1. CONTRAST-ENHANCED NAIP IMAGERY (USDA-FSA, 2006) OF THE COYOTE SPRINGS STUDY
AREA, SUPERIMPOSED OVER A LIDAR-DERIVED SLOPESHADE
FIGURE 2-2. NRCS SOIL SURVEY DATA FOR THE COYOTE SPRINGS STUDY AREA, MAPPED AT 1:24,000 (SOIL
SURVEY STAFF, 2006; SOIL SURVEY STAFF, 2011). THREE DISTINCT SURVEY UNITS ARE IDENTIFIED.
DATA IN THIS FIGURE HAVE BEEN MODIFIED FOR DISPLAY PURPOSES AND ARE SHOWN BEYOND THEIR
INTENDED SCALE – THESE SOIL ASSOCIATIONS CANNOT REVEAL SMALL AREAS OF DISTINCT SOIL TYPES
OCCURRING WITHIN THE AREA
FIGURE 2-3. SOLAR INSOLATION MAP OF THE GREATER COYOTE SPRINGS STUDY AREA. COORDINATES ARE IN METERS (NAD 83 UTM 11N)
FIGURE 2-4. SURFICIAL GEOLOGIC MAP OF THE COYOTE SPRINGS STUDY AREA (REDUCED FROM ORIGINAL
1:3,000 SCALE). THE MAP UNIT KEY IS SHOWN ON THE NEXT PAGE (FIGURE 2-5)
FIGURE 2-5. KEY TO THE COYOTE SPRINGS SURFICIAL GEOLOGIC MAP (FIGURE 2-4)
FIGURE 2-6. APPROXIMATE AGE RELATIONSHIPS AMONG COYOTE SPRINGS SURFICIAL GEOLOGIC MAP
UNITS
TIOURE 2-7. AN ERODING BALLENA OF QAT SEDIMENTS. THIS NARROW RIDGE IS ONLY A FEW METERS
GRAVELS FROM AN OLD ALLIVIAL SUBFACE HAVE BEEN LET DOWN DURING FROSION AND NOW
DDADE OVED DECIDIAL DI ANAD DEDDED CILTS AND SANDS
EVALUATE OVER RESIDUAL, FLANAR-BEDDED SILTS AND SANDS
EXCAVATION IN THE FOREGROUND) 36
FIGURE 2-9 A VIEW OF THEOA2 SURFACE IN THE SOUTHERN HALF OF THE STUDY AREA I OOKING WEST
MOST OF THE AREA VEGETATED IN THE BACKGROUND WAS MAPPED AS UNIT OAU 37
FIGURE 2-10 CHARACTERISTIC DESERT PAVEMENT ON THE OA3 SURFACE. CLASTS ARE RELATIVELY FINE
AND ARE CHIEFLY COMPOSED OF LIMESTONE 37
FIGURE 2-11. THE CONTACT BETWEEN UNITS QA3 AND QLV-SUMMIT. THE GEOLOGIST IS WALKING ON
QA3 SEDIMENTS (REDDER) AND POINTING TOWARDS THE PALER OLV-SUMMIT SURFACE. THIS
CONTACT IS GRADUAL OVER 3 TO 5 METERS AND QLV-SUMMIT IS COMMONLY 10 TO 20 CM LOWER IN
ELEVATION THAN QA3
FIGURE 2-12. A SMALL, ~40CM GULLY CUT BANK IN QLV-SUMMIT, SHOWING HIGHLY-INDURATED
POLYGENETIC SOILS AND A PAVEMENT COMPOSED OF CALCIUM-CARBONATE RHIZOLITH FRAGMENTS.
THIS IS BUCKWHEAT HABITAT
FIGURE 2-13. THE QLV-SUMMIT SURFACE (FOREGROUND) AND ITS MORPHOSTRATIGRAPHIC POSITION
BELOW QA1 (BALLENA IN BACKGROUND)
FIGURE 2-14. RELATIVE ELEVATION OF QA4 ABOVE QA5 (A SMALL, 20CM INTERMEDIATE TERRACE IN THE
FOREGROUND BETWEEN THEM IS LUMPED WITHIN QA5). IN THE BACKGROUND, QLV-ERODE IS
GRADED TO QA4
FIGURE 2-15. BADLANDS COMPRISED OF THE PLANAR QLV-SUMMIT SURFACE, AND STEEP, UNSTABLE SIDE
SLOPES OF QLV-ERODE
FIGURE 2-16. RELATIONSHIPS BETWEEN QLV-SUMMIT, QLV-ERODE, QA4 (PALE, SPARSELY VEGETATED
ALLUVIUM IN RIGHT-SIDE OF VALLEY), α QA3 (NARROW, MORE VEGETATED WASH IN LEFT CENTER OF
IMAGE)
FIGURE 2-17. DISTRIBUTION OF BUCK WHEAT HABITAT CLASSES WITHIN THE COYOTE SPRINGS STUDY
AREA. DUCKWHEAT MAT BE LUCALLT ABSENT OK UNEVENLT DISTRIBUTED ACROSS HABITAT AREAS
FIGURE 2.18 CONTRAST ENHANCED NAID IMAGERY (USDA ESA 2006) OF THE GOLD BUTTE STUDY
1000000000000000000000000000000000000
FIGURE 2-19 NRCS SOIL SURVEY DATA FOR THE COVOTE SPRINGS STUDY AREA MAPPED AT 1:24 000
(SOIL SURVEY STAFF 2006: SOIL SURVEY STAFF 2011) FIVE DISTINCT SOIL ASSOCIATIONS ARE
IDENTIFIED AT GOLD BUTTE. DATA IN THIS FIGURE HAVE BEEN MODIFIED FOR DISPLAY PURPOSES AND
ARE SHOWN BEYOND THEIR INTENDED SCALE – SOIL ASSOCIATIONS AND COMPLEXES CANNOT REVEAL
SMALL AREAS OF DISTINCT SOIL TYPES OCCURRING WITHIN THE AREA 43
FIGURE 2-20. SOLAR INSOLATION MAP OF THE GREATER GOLD BUTTE STUDY AREA. COORDINATES ARE IN
METERS (NAD 83 UTM 11N)

FIGURE 2-21. SURFICIAL GEOLOGIC MAP OF THE GOLD BUTTE STUDY AREA (REDUCED FROM ORIGINAL	
1:3,000 SCALE). THE MAP UNIT KEY IS SHOWN ON THE NEXT PAGE	45
FIGURE 2-22. KEY TO THE GOLD BUTTE SURFICIAL GEOLOGIC MAP (FIGURE 21).	46
FIGURE 2-23. APPROXIMATE AGE RELATIONSHIPS AMONG THE GOLD BUTTE SURFICIAL GEOLOGIC MAP	
UNITS	49
FIGURE 2-24. RELATIONSHIP BETWEEN QA1, QA3, AND TGYP. ELEVATION OF THE EROSIONAL SURFACE	E OF
TGYP IN MOST OF THE FIELD AREA IS ROUGHLY CORRELATIVE WITH THE ELEVATION OF THE ${ m QA2}$	
SURFACE. QA1 IS TYPICALLY 2 TO 3 METERS HIGHER. THE QA1 SURFACE IS GRADED AT A SLIGHT	LY
SHALLOWER ANGLE THAN QA2, AND ORIGINATES FROM A HIGHER ELEVATION	50
FIGURE 2-25. COBBLY DESERT PAVEMENT ON THE SURFACE OF QA2	50
FIGURE 2-26. QA2 SURFACE AND FINE, SANDY SEDIMENTS SHOWN IN A SOIL PROFILE EXCAVATION	51
FIGURE 2-27. MORPHOSTRATIGRAPHIC RELATIONSHIPS BETWEEN UNITS QA4, QA3, AND QA2.	51
FIGURE 2-28. QA3 ALLUVIUM AND GEOMORPHIC SURFACE ABOVE QA4.	52
FIGURE 2-29. TGYP, QGYP, AND QEA (FROM ~N TO S). QC HILL SLOPES AND THE QA2 SURFACE ARE	
VISIBLE IN THE BACKGROUND.	52
FIGURE 2-30. VIEW FROM OPPOSITE THE RIDGE USED AS THE VANTAGE POINT IN FIGURE 29. PHOTOGRA	PH
TAKEN FROM SSW TO NNE	53
FIGURE 2-31. RELATIONSHIPS BETWEEN UNITS TGYP, QGYP, AND QEA.	53
FIGURE 2-32. SOIL PROFILE EXCAVATION IN UNIT QEA BELOW A BUCKWHEAT PLANT.	54
FIGURE 2-33. SOIL PROFILE EXCAVATION IN UNIT QP. DESICCATION POLYGONS ARE FAINTLY VISIBLE	
BEHIND AND TO THE RIGHT OF THE PIT.	54
FIGURE 2-34. OUTCROP OF UNIT TTUFF.	55
FIGURE 2-35. OUTCROPS OF PALE TTUFF OUTCROPS AMID DEPOSITS OF UNIT QA3 (REDDER). UNIT QGYP,	,
MANTLED WITH BIOLOGICAL SOIL CRUSTS, IS VISIBLE AS THE DARKER MATERIAL IN THE	
BACKGROUND.	55
FIGURE 2-36. AN EXAMPLE OF TROCK. IN THIS PHOTO IT OCCURS AS THINLY-BEDDED CALCAREOUS	
SILTSTONE	56
FIGURE 2-37. DISTRIBUTION OF BUCK WHEAT HABITAT CLASSES WITHIN THE GOLD BUTTE STUDY AREA.	57
FIGURE 2-38. CONTRAST-ENHANCED NAIP IMAGERY (USDA-FSA, 2006) OF THE BITTER SPRING STUD	Y
AREA, SUPERIMPOSED OVER A LIDAR-DERIVED SLOPESHADE.	58
FIGURE 2-39. NRCS SOIL SURVEY DATA FOR THE BITTER SPRING STUDY AREA, MAPPED AT 1:24,000	
(SOIL SURVEY STAFF, 2006; SOIL SURVEY STAFF, 2011). TWO SOIL ASSOCIATIONS AND TWO	
COMPLEXES ARE IDENTIFIED. DATA IN THIS FIGURE HAVE BEEN MODIFIED FOR DISPLAY PURPOSES	AND
ARE SHOWN BEYOND THEIR INTENDED SCALE – SOIL ASSOCIATIONS AND COMPLEXES CANNOT REV	'EAL
SMALL AREAS OF DISTINCT SOIL TYPES OCCURRING WITHIN THE AREA	59
FIGURE 2-40. SOLAR INSOLATION MAP OF THE GREATER BITTER SPRING STUDY AREA. COORDINATES ARE	E IN
METERS (NAD 83 UTM 11N).	60
FIGURE 2-41. SURFICIAL GEOLOGIC MAP OF THE BITTER SPRING STUDY AREA (REDUCED FROM ORIGINAL	L
1:3,000 SCALE). THE MAP UNIT KEY IS SHOWN ON THE NEXT PAGE (FIGURE 42).	61
FIGURE 2-42. KEY TO THE BITTER SPRING SURFICIAL GEOLOGIC MAP (FIGURE 41)	62
FIGURE 2-43. APPROXIMATE AGE RELATIONSHIPS AMONG THE BITTER SPRING SURFICIAL GEOLOGIC MAD	Р
UNITS	64
FIGURE 2-44. QA1 SURFACE WITH COBBLE-SIZED FRAGMENTS OF PALE, REDDISH, DEGRADED, STAGE III	
CALCIC SOIL VISIBLE IN LOWER LEFT.	65
FIGURE 2-45. GULLY CUT BANK REVEALING A CHARACTERISTIC SOIL PROFILE (W/ SOME CASE HARDENIN	1G)
IN QA1 SEDIMENTS.	65
FIGURE 2-46. GULLY CUT BANK REVEALING THE GRAVELLY CALCIC SOIL PROFILE OF UNIT QA1	66
FIGURE 2-47. EXAMPLES OF UNITS TSS, QA1, QA2, AND QC. SPARSE MANTLES OF COLLUVIUM OR	
RESIDUAL PEBBLES FROM QA2 ARE ALMOST UBIQUITOUS ON TSS.	66
FIGURE 2-48. SEDIMENTARY STRATA OF TSS EXPOSED BENEATH A THIN COLLUVIAL MANTLE FROM	
ERODING QA2 SEDIMENTS	67
FIGURE 2-49. RELATIVE SURFACE ELEVATIONS OF ALLUVIAL UNITS QA4, QA3, AND QA2	67
FIGURE 2-50. OVERVIEW OF THE BITTER SPRING STUDY AREA. OUTCROP OF TROCK IN LEFT FOREGROUN	۱D;
RELATIVE SURFACE ELEVATIONS OF QA1 AND QA2 VISIBLE IN RIGHT BACKGROUND. TSS IS ALSO	,
VISIBLE AS PALER, SPARSELY VEGETATED TO BARE PATCHES ON SIDE SLOPES.	68

FIGURE 2-51. VIEW TO THE NORTH FROM ATOP A NARROW RIDGE OF QA1 IN THE SOUTH CENTRAL PART OF
THE BITTER SPRING STUDY AREA
FIGURE 2-52. DISTRIBUTION OF BUCKWHEAT HABITAT CLASSES WITHIN THE BITTER SPRING STUDY AREA.
FIGURE 3-1 DISTRIBUTION OF SITES WITHIN THE COYOTE SPRINGS STUDY AREA. SUPERIMPOSED ON A
SHADED RELIEF MAP 83
FIGURE 3-2. DISTRIBUTION OF SITES WITHIN THE GOLD BUTTE STUDY AREA. SUPERIMPOSED ON A SHADED
RELIEF MAP. SITES ARE GENERALLY CLOSER TOGETHER AT GOLD BUTTE THAN IN THE OTHER STUDY AREAS (SEE INSET)
FIGURE 3-3. DISTRIBUTION OF SITES WITHIN THE BITTER SPRING (WHITE BASIN) STUDY AREA,
SUPERIMPOSED ON A SHADED RELIEF MAP
FIGURE 3-4. SCHEMATIC ILLUSTRATION OF DATA GROUPS FOR UNPAIRED NON-PARAMETRIC T-TESTS,
SHOWING DIVISION BY BUCKWHEAT PRESENCE/ABSENCE OR HABITAT CLASS (TOP ROW), STUDY AREA (SECOND ROW), HORIZON OR PROFILE (THIRD ROW), AND DATA GROUP (FOURTH ROW). ALL COMPARISONS TESTED FOR DIFFERENCES BETWEEN BUCKWHEAT GROUPS AMONG 33 VARIABLES. BW = BUCKWHEAT PRESENT, NBW = BUCKWHEAT ABSENT, HAB = HABITAT, PHAB = POTENTIAL HABITAT, AND NHAB = NON-HABITAT
FIGURE 4-1. ILLUSTRATION OF SURFACE COVER CLASSES, AND DISTINCT SAMPLING/DATA ANALYSIS
STRATEGIES FOR SURFACE AND HORIZON SAMPLES
FIGURE 4-2. ILLUSTRATION OF THE SURFACE POINT COUNT METHOD AND OBSERVATION/SAMPLING GRID.
FIGURE 4-3. SCHEMATIC ILLUSTRATION OF (A) UNPAIRED AND (B) PAIRED SURFACE SAMPLE DATA
ANALYSES. ABBREVIATIONS FOR BUCK WHEAT PRESENCE/ABSENCE OR HABITAT CLASSES ARE $BW =$
BUCKWHEAT, NBW = NON-BUCKWHEAT, HAB = HABITAT, PHAB = POTENTIAL HABITAT, NHAB
= NON-HABITAT. CANOPY TYPE ABBREVIATIONS ARE BW = BUCKWHEAT CANOPY, IN =
INTERSPACE, UC = OTHER PLANT CANOPY

LIST OF TABLES

TABLE 2-1. COYOTE SPRINGS MAP UNITS AND SOIL PROFILE SITES	34
TABLE 2-2. GOLD BUTTE MAP UNITS AND SOIL PROFILE SITES	48
TABLE 2-3. BITTER SPRING MAP UNITS AND SOIL PROFILE SITES	64
TABLE 2-4. HABITAT CLASS AREAS	70
TABLE 2-5. SUMMARY OF CHI-SQUARE TEST FOR COYOTE SPRINGS UNIT QLV-SUMMIT	70
TABLE 3-1. HORIZON AND PROFILE DATA PROCESSING	90
TABLE 3-2. MINIMUM, MAXIMUM, AND MEAN VALUES OF LABORATORY SAMPLE DATA BETWEEN SITE CLASSES A	٩T
COYOTE SPRINGS.	94
TABLE 3-3. MINIMUM, MAXIMUM, AND MEAN VALUES OF LABORATORY SAMPLE DATA BETWEEN SITE CLASSES A	٩T
GOLD BUTTE.	95
TABLE 3-4. MINIMUM, MAXIMUM, AND MEAN VALUES OF LABORATORY SAMPLE DATA BETWEEN SITE CLASSES A	٩T
BITTER SPRING	96
TABLE 3-5. MINIMUM, MAXIMUM, AND MEAN VALUES OF LABORATORY SAMPLE DATA BETWEEN SITE CLASSES A	٨ND
ACROSS ALL STUDY AREAS	97
TABLE 3-6. GENERAL MINERAL COMPOSITIONS OF SELECT SAMPLES, FROM XRD ANALYSIS OF BULK POWDER	
SAMPLES	98
TABLE 3-7. RESULTS OF PHYLLOSILICATE MINERALOGICAL ANALYSIS ON SELECT SAMPLES	99
TABLE 3-8. SUMMARY OF INDEPENDENT NON-PARAMETRIC T-TESTS FOR DIFFERENCES AMONG SOIL PROFILE MEA	NS
(ALL HORIZONS AVERAGED) BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	100
TABLE 3-9. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MINIMUM VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	101
TABLE 3-10. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MAXIMUM VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	102
TABLE 3-11. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE WEIGHTED MEANS (ALL HORIZONS	
AVERAGED AND WEIGHTED BASED ON THICKNESS) BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEA	Т"
SITES	103
TABLE 3-12. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN A HORIZON VALUES BETWEEN "BUCKWHEA	.Т"
SITES AND "NON-BUCKWHEAT" SITES	104
TABLE 3-13. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN B HORIZON VALUES BETWEEN "BUCKWHEA	.T"
SITES AND "NON-BUCKWHEAT" SITES	106
TABLE 3-14. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN C HORIZON VALUES BETWEEN "BUCKWHEA	. Т"
SITES AND "NON-BUCKWHEAT" SITES	107
TABLE 3-15. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MINIMUM A HORIZON VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	108
TABLE 3-16. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM A HORIZON VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	110
TABLE 3-17. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MINIMUM B HORIZON VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	112
TABLE 3-18. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM B HORIZON VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	113
TABLE 3-19. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MINIMUM C HORIZON VALUES BETWEEN	
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	114
TABLE 3-20. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM C HORIZON VALUES BETWEEN	115
"BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES	115
TABLE 3-21. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG A HORIZON WEIGHTED MEAN VALUES (ALL HORIZ	ONS
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWH	EAT"
SITES	116
TABLE 3-22. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG B HORIZON WEIGHTED MEAN VALUES (ALL HORIZ	ONS
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWH	EAT"
	118
TABLE 5-25. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG C HORIZON WEIGHTED MEAN VALUES (ALL HORIZ	UNS
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWH	EA I
DIED	119
TABLE 5-24. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MEANS (ALL HORIZONS AVERAGED)	120
BEIWEEN HABITAT SHES AND FUTENTIAL HABITAT SHES	120

TABLE 3-25. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MINIMUM VALUES BETWEEN "HABITAT	."
SITES AND "POTENTIAL HABITAT" SITES 1	21
TABLE 3-26. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MAXIMUM VALUES BETWEEN "HABITA"	Т"
sites and "Potential Habitat" Sites1	22
TABLE 3-27. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG SOIL PROFILE MEANS (ALL HORIZONS AVERAGED ANI)
WEIGHTED BASED ON THICKNESS) BETWEEN "HABITAT" SITES AND "POTENTIAL HABITAT" SITES 1	23
TABLE 3-28. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN A HORIZON VALUES BETWEEN "HABITAT" SITI	ES
and "Potential Habitat" Sites 1	24
TABLE 3-29. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN B HORIZON VALUES BETWEEN "HABITAT" SITH	ES
and "Potential Habitat" Sites 1	25
TABLE 3-30. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MEAN C HORIZON VALUES BETWEEN "HABITAT" SITH	ES
and "Potential Habitat" Sites 1	26
TABLE 3-31. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MINIMUM A HORIZON VALUES BETWEEN "HABITAT"	
SITES AND "POTENTIAL HABITAT" SITES 1	27
TABLE 3-32. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM A HORIZON VALUES BETWEEN "HABITAT"	'
SITES AND "POTENTIAL HABITAT" SITES 1	28
$TABLE \ 3-33. \ SUMMARY \ OF \ NON-PARAMETRIC \ T-TESTS \ AMONG \ MINIMUM \ B \ HORIZON \ VALUES \ BETWEEN \ "HABITAT"$	
SITES AND "POTENTIAL HABITAT" SITES 1	29
TABLE 3-34. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM B HORIZON VALUES BETWEEN "HABITAT"	1
SITES AND "POTENTIAL HABITAT" SITES 1	30
TABLE 3-35. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MINIMUM C HORIZON VALUES BETWEEN "HABITAT"	
SITES AND "POTENTIAL HABITAT" SITES 1	31
TABLE 3-36. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG MAXIMUM C HORIZON VALUES BETWEEN "HABITAT"	'
SITES AND "POTENTIAL HABITAT" SITES 1	32
TABLE 3-37. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG A HORIZON WEIGHTED-MEAN VALUES (ALL HORIZON	$\mathbf{1S}$
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "HABITAT" SITES AND "POTENTIAL HABITAT"	'
SITES 1	33
TABLE 3-38. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG B HORIZON WEIGHTED-MEAN VALUES (ALL HORIZON $(A = 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	IS
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "HABITAT" SITES AND "POTENTIAL HABITAT"	'
Sites1	34
TABLE 3-39. SUMMARY OF NON-PARAMETRIC T-TESTS AMONG C HORIZON WEIGHTED-MEAN VALUES (ALL HORIZON	1S
AVERAGED AND WIEGHTED BY HORIZON THICKNESS), BETWEEN "HABITAT" SITES AND "POTENTIAL HABITAT"	'
Sites1	35
TABLE 3-40. SUMMARY OF NON-PARAMETRIC T-TEST FOR DIFFERENCES AMONG SOIL PROFILE MEAN VALUES	
(AVERAGES OF ALL HORIZONS COMBINED) BETWEEN "NON-HABITAT" AND "POTENTIAL HABITAT" SITES 1	36
TABLE 3-41. SUMMARY OF NON-PARAMETRIC T-TEST FOR DIFFERENCES AMONG MEAN A HORIZON VALUES, BETWEE	ΞN
"Non-habitat" and "Potential Habitat" sites1	38
TABLE 3-42. SUMMARY OF NON-PARAMETRIC T-TEST FOR DIFFERENCES AMONG MEAN B HORIZON VALUES, BETWEE	ΞN
"Non-habitat" and "Potential Habitat" sites1	40
TABLE 3-43. SUMMARY OF NON-PARAMETRIC T-TEST FOR DIFFERENCES AMONG MEAN C HORIZON VALUES, BETWEE	EN
"Non-habitat" and "Potential Habitat" sites1	41
TABLE 3-44. SUMMARY OF INDEPENDENT NON-PARAMETRIC T-TESTS FOR DIFFERENCES AMONG SOIL PROFILE MEDIA	٩N
VALUES BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES 1	42
TABLE 3-45. SUMMARY OF NON-PARAMETRIC INDEPENDENT SAMPLES T-TESTS FOR DIFFERENCES IN A HORIZON	
MEDIAN VALUES, BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES 1	43
TABLE 3-46. SUMMARY OF NON-PARAMETRIC INDEPENDENT SAMPLES T-TESTS FOR DIFFERENCES IN B HORIZON	
MEDIAN VALUES, BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES 1	44
TABLE 3-47. SUMMARY OF NON-PARAMETRIC INDEPENDENT SAMPLES T-TESTS FOR DIFFERENCES IN C HORIZON	
MEDIAN VALUES, BETWEEN "BUCKWHEAT" SITES AND "NON-BUCKWHEAT" SITES 1	45
TABLE 3-48. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SOIL ANALYSES BETWEEN	
BUCKWHEAT SITES (BW) AND NON-BUCKWHEAT SITES 1	46
TABLE 3-49. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SOIL ANALYSES BETWEEN	
BUCKWHEAT HABITAT (BW) VERSUS POTENTIAL HABITAT1	50
TABLE 3-50. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SOIL ANALYSES BETWEEN POTENTI	AL
HABITAT (PHAB) VERSUS NON-HABITAT SITES1	54
TABLE 3-51, SPEARMAN'S RHO ALL HABITATS, COYOTE SPRINGS, WHOLE SOIL PROFILE MEAN	57

TABLE 3-52. SPEARMAN'S RHO BUCKWHEAT HABITAT, COYOTE SPRINGS, WHOLE SOIL PROFILE MEAN	158
TABLE 3-53. SPEARMAN'S RHO NON-HABITAT, COYOTE SPRINGS, WHOLE SOIL PROFILE MEAN	159
TABLE 3-54. SPEARMAN'S RHO POTENTIAL HABITAT, COYOTE SPRINGS, WHOLE SOIL PROFILE MEAN	160
TABLE 3-55. SPEARMAN'S RHO ALL HABITATS, GOLD BUTTE, WHOLE SOIL PROFILE MEAN	161
TABLE 3-56. SPEARMAN'S RHO HABITAT, GOLD BUTTE, PROFILE MEAN	162
TABLE 3-57. SPEARMAN'S RHO NON-HABITAT, GOLD BUTTE, WHOLE SOILPROFILE MEAN	163
TABLE 3-58. SPEARMAN'S RHO POTENTIAL HABITAT, GOLD BUTTE, WHOLE SOIL PROFILE MEAN	164
TABLE 3-59. SPEARMAN'S RHO ALL HABITATS, BITTER SPRING, WHOLE SOIL PROFILE MEAN	165
TABLE 3-60. SPEARMAN'S RHO BUCKWHEAT HABITAT, BITTER SPRING, WHOLE SOIL PROFILE MEAN	166
TABLE 3-61. SPEARMAN'S RHO NON-HABITAT, BITTER SPRING, WHOLE SOIL PROFILE MEAN	167
TABLE 3-62. SPEARMAN'S RHO POTENTIAL HABITAT, BITTER SPRING, WHOLE SOIL PROFILE MEAN	168
TABLE 3-63. SPEARMAN'S RHO ALL SITES, ALL HABITATS, WHOLE SOIL PROFILE MEAN	169
TABLE 3-64. SPEARMAN'S RHO ALL SITES, BUCKWHEAT HABITAT, WHOLE SOIL PROFILE MEAN	170
TABLE 3-65. SPEARMAN'S RHO ALL SITES, NON-HABITAT, WHOLE SOIL PROFILE MEAN	171
TABLE 3-66. SPEARMAN'S RHO ALL SITES, POTENTIAL HABITAT, WHOLE SOIL PROFILE MEAN	172
TABLE 3-67. SPEARMAN'S RHO ALL HABITATS, COYOTE SPRINGS, A HORIZON	173
TABLE 3-68. SPEARMAN'S RHO HABITAT, COYOTE SPRINGS, A HORIZON	174
TABLE 3-69. SPEARMAN'S RHO NON-HABITAT, COYOTE SPRINGS, A HORIZON	175
TABLE 3-70. SPEARMAN'S RHO POTENTIAL HABITAT, COYOTE SPRINGS, A HORIZON	176
TABLE 3-71. SPEARMAN'S RHO ALL CHEMISTRY, GOLD BUTTE, A HORIZON	177
TABLE 3-72. SPEARMAN'S RHO HABITAT, GOLD BUTTE, A HORIZON	178
TABLE 3-73. SPEARMAN'S RHO NON-HABITAT, GOLD BUTTE, A HORIZON	179
TABLE 3-74. SPEARMAN'S RHO POTENTIAL HABITAT, GOLD BUTTE, A HORIZON	180
TABLE 3-75. SPEARMAN'S RHO ALL HABITATS, BITTER SPRING, A HORIZON	181
TABLE 3-76. SPEARMAN'S RHO BUCKWHEAT HABITAT, BITTER SPRING, A HORIZON	182
TABLE 3-77. SPEARMAN'S RHO NON-HABITAT, BITTER SPRING, A HORIZON	183
TABLE 3-78. SPEARMAN'S RHO POTENTIAL HABITAT, BITTER SPRING, A HORIZON	184
TABLE 3-79. SPEARMAN'S RHO ALL SITES, ALL HABITATS, A HORIZON	185
TABLE 3-80. SPEARMAN'S RHO ALL SITES, HABITAT, A HORIZON	186
TABLE 3-81. SPEARMAN'S RHO ALL SITES, NON-HABITAT, A HORIZON	187
TABLE 3-82. SPEARMAN'S RHO ALL SITES, POTENTIAL HABITAT, A HORIZON	188
TABLE 3-83. SPEARMAN'S RHO ALL CHEMISTRY, COYOTE SPRINGS, B HORIZON	189
TABLE 3-84. SPEARMAN'S RHO HABITAT, COYOTE SPRINGS, B HORIZON	190
TABLE 3-85. SPEARMAN'S RHO NON-HABITAT, COYOTE SPRINGS, B HORIZON	191
TABLE 3-86. SPEARMAN'S RHO POTENTIAL HABITAT, COYOTE SPRINGS, B HORIZON	192
TABLE 3-87. SPEARMAN'S RHO ALL HABITATS AT GOLD BUTTE, B HORIZON	193
TABLE 3-88. SPEARMAN'S RHO HABITAT, GOLD BUTTE, B HORIZON	194
TABLE 3-89. SPEARMAN'S RHO NON-HABITAT, GOLD BUTTE, B HORIZON	195
TABLE 3-90. SPEARMAN'S RHO POTENTIAL HABITAT, GOLD BUTTE, B HORIZON	196
TABLE 3-91. SPEARMAN'S RHO ALL HABITATS, BITTER SPRING, B HORIZON	197
TABLE 3-92. SPEARMAN'S RHO HABITAT, BITTER SPRING, B HORIZON	198
TABLE 3-93. SPEARMAN'S RHO NON-HABITAT, BITTER SPRING, B	199
TABLE 3-94. SPEARMAN'S RHO POTENTIAL HABITAT, BITTER SPRING, B HORIZON	200
TABLE 3-95, SPEARMAN'S RHO ALL SITES, ALL HABITATS, B HORIZON	201
TABLE 3-96. SPEARMAN'S RHO ALL SITES, HABITAT, B HORIZON	202
TABLE 3-97, SPEARMAN'S RHO ALL SITES, NON-HABITAT, B HORIZON	203
TABLE 3-98, SPEARMAN'S RHO ALL SITES, POTENTIAL HABITAT, B HORIZON	204
TABLE 3-99. SPEARMAN'S RHO ALL HABITATS. GOLD BUTTE, C HORIZON	205
TABLE 3-100. SPEARMAN'S RHO HABITAT. GOLD BUTTE, C HORIZON	206
TABLE 3-101 SPEARMAN'S RHO NON-HABITAT GOLD BUTTE C HORIZON	207
TABLE 3-102. SPEARMAN'S RHO POTENTIAL HABITAT, GOLD BUTTE, C HORIZON	
TABLE 3-103. SPEARMAN'S RHO ALL HABITATS. BITTER SPRING, C HORIZON	209
TABLE 3-104. SPEARMAN'S RHO HABITAT. BITTER SPRING C HORIZON	
TABLE 3-105 SPEARMAN'S RHO NON-HABITAT BITTER SPRING C HORIZON	211
TABLE 3-106. SPEARMAN'S RHO POTENTIAL HABITAT BITTER SPRING C HORIZON	212
TABLE 3-107 SPEARMAN'S RHO ALL SITES ALL HABITATS C HORIZON	212
TABLE 5 TOT. OF LARMAN 5 KITO THE SITES, THE HABITATS, C HOMEON	

TABLE 3-108. SPEARMAN'S RHO ALL SITES, HABITAT, C HORIZON	. 214
TABLE 3-109. SPEARMAN'S RHO ALL SITES, NON-HABITAT, C HORIZON	.215
TABLE 3-110. SPEARMAN'S RHO ALL SITES. POTENTIAL HABITAT. C HORIZON	.216
TABLE 4-1. STATISTICAL ANALYSIS OF SURFACE DATA SOUGHT TRENDS AMONG THESE 63 VARIABLES FROM THRE	E
CATEGORIES	243
TABLE 4-2 SUMMARY OF COMPOSITE VARIABLE CLASSES USED IN STATISTICAL ANALYSIS OF SURFACE DATA	244
TABLE 4-3 SUMMARY OF UNPAIRED NON-PARAMETRIC T-TESTS BETWEEN INTERSPACES IN "BUCK WHEAT" SITES X	vs.
INTERSPACES IN "NON-BLICK WHEAT" SITES	247
TABLE 4-4 SUMMARY OF PAIRED NON-PARAMETRIC T-TESTS FOR DIFFERENCE RETWEEN SOILS UNDER BUCKWHE	ат Ат
CANOPIES VS. SOILS UNDER OTHER PLANT CANOPIES (PAIRED WITHIN "BUCKWHEAT" SITES)	249
TABLE 4-5 SUMMARY OF PAIRED NON-PARAMETRIC T-TESTS RETWEEN SOILS UNDER BUCK WHEAT CANOPIES VS	. 217
SOILS IN INTERSPACES AT BUCKWHEAT SITES (PAIRED WITHIN "BUCKWHEAT" SITES)	250
TABLE A.6 SUMMARY OF DAIDED NON-DARAMETRIC T-TESTS FOR DIFFERENCES BETWEEN SOILS UNDER OTHER DI	ANT
CANODIC VC. SOMMART OF TAINED NON-TARAMETRIC T-TESTSTOR DITTERENCES DETWEEN SOILS UNDER OTHERTER	252
TADE E A 7 SUMMADY OF UNDAIDED NON DADAMETRIC T TESTS DETWEEN INTERSPACES IN "HADITAT" SITES VS.	. 232
IADLE 4-7. SUMMART OF UNFAILED NON-FARAMETRIC I-TESTS DET WEEN INTERSPACES IN TIADITAT SITES VS.	254
TADLE 4.9 SUMMADY OF UNDAIDED NON DAD AMETRIC T TESTS DETWEEN INTERSDACES IN "DOTENTIAL HADITAT"	. 234
TABLE 4-8. SUMMART OF UNPAIRED NON-PARAMETRIC T-TESTS BETWEEN INTERSPACES IN TOTENTIAL HADITAT	255
SHES VS. INTERSPACES IN INON-HADHAT SHES	. 233 EEN
TABLE 4-9. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS BETW.	257
TABLE 4 10 SUDMARY OF TRENDS BUSTATISTICALLY SIGNIFICANT RESULTS ON SUDFACES CHARACTERISTICS UNIT	. 237 FD
TABLE 4-10. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS UNDI	250
BUCK WHEAT CANOPIES VS. UNDER OTHER PLANT CANOPIES (PAIRED WITHIN "BUCK WHEAT" SITES)	. 239
TABLE 4-11. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS UNDI	ER
BUCK WHEAT CANOPIES VS. INTERSPACES AT BUCK WHEAT SITES (PAIRED WITHIN BUCK WHEAT SITES)	. 260
TABLE 4-12. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS UNDI	ER
OTHER PLANT CANOPIES VS. INTERSPACES AT BUCKWHEAT SITES (PAIRED WITHIN BUCKWHEAT SITES)	. 262
TABLE 4-13. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS IN	
INTERSPACES IN BUCKWHEAT HABITAT VS. INTERSPACES IN "POTENTIAL" HABITAT SITES	. 264
TABLE 4-14. SUMMARY OF TRENDS IN STATISTICALLY SIGNIFICANT RESULTS ON SURFACE CHARACTERISTICS IN	
INTERSPACES IN "POTENTIAL" HABITAT SITES VS INTERPACES IN NON-HABITAT SITES	. 265
TABLE 4-15. SPEARMAN'S RHO BUCKWHEAT INTERSPACE, SURFACE DATA, ALL SITES	. 267
TABLE 4-16. SPEARMAN'S RHO BUCKWHEAT INTERSPACE, SURFACE DATA, BITTER SPRINGS	. 270
TABLE 4-17. SPEARMAN'S RHO BUCKWHEAT INTERSPACE, SURFACE DATA, COYOTE SPRINGS	. 271
TABLE 4-18. SPEARMAN'S RHO BUCKWHEAT INTERSPACE, SURFACE DATA, GOLD BUTTE	. 272
TABLE 4-19. SPEARMAN'S RHO NON-BW INTERSPACE, SURFACE DATA, ALL SITES	. 274
TABLE 4-20. SPEARMAN'S RHO NON-BW INTERSPACE, SURFACE DATA, BITTER SPRING	. 278
TABLE 4-21. SPEARMAN'S RHO NON-BW INTERSPACE, SURFACE DATA, COYOTE SPRINGS	. 280
TABLE 4-22. SPEARMAN'S RHO NON-BW INTERSPACE, SURFACE DATA, GOLD BUTTE	. 282
TABLE 4-23. SPEARMAN'S RHO POTENTIAL HABITAT INTERSPACE, SURFACE DATA, ALL SITES	. 285
TABLE 4-24. SPEARMAN'S RHO POTENTIAL HABITAT INTERSPACE, SURFACE DATA, BITTER SPRING	. 288
TABLE 4-25. SPEARMAN'S RHO POTENTIAL HABITAT INTERSPACE, SURFACE DATA, COYOTE SPRINGS	. 289
TABLE 4-26. SPEARMAN'S RHO POTENTIAL HABITAT INTERSPACE, SURFACE DATA, GOLD BUTTE	. 290
TABLE 4-27. SPEARMAN'S RHO NON-HABITAT INTERSPACE, SURFACE DATA, ALL SITES	. 292
TABLE 4-28. SPEARMAN'S RHO NON-HABITAT INTERSPACE, SURFACE DATA, BITTER SPRING	. 295
TABLE 4-29. SPEARMAN'S RHO NON-HABITAT INTERSPACE, SURFACE DATA, COYOTE SPRINGS	. 297
TABLE 4-30. SPEARMAN'S RHO NON-HABITAT INTERSPACE, SURFACE DATA, GOLD BUTTE	. 299
TABLE 4-31. SPEARMAN'S RHO BW CANOPY BW PLOTS, SURFACE DATA, ALL SITES	. 301
TABLE 4-32. SPEARMAN'S RHO BWCANOPY BW PLOTS, SURFACE DATA, BITTER SPRING	. 304
TABLE 4-33. SPEARMAN'S RHO BWCANOPY BW PLOTS, SURFACE DATA, COYOTE SPRINGS	. 305
TABLE 4-34. SPEARMAN'S RHO BWCANOPY BW PLOTS, SURFACE DATA, GOLD BUTTE	. 306
TABLE 4-35. SPEARMAN'S RHO OTHER PLANTS-UNDER CANOPY IN BW PLOTS, SURFACE DATA, ALL SITES	. 308
TABLE 4-36. SPEARMAN'S RHO OTHER PLANTS-UNDER CANOPY IN BW PLOTS, SURFACE DATA, BITTER SPRING	. 311
TABLE 4-37. SPEARMAN'S RHO OTHER PLANTS-UNDER CANOPY IN BW PLOTS, SURFACE DATA, COYOTE SPRING	S
	. 312

TABLE 4-38. SPEARMAN'S RHO OTHER PLANTS-UNDER CANOPY IN BW PLOTS, SURFACE DATA, GOLD BUTTE 313

Executive Summary

Purpose

The purpose of this two-year field and laboratory project was to determine whether soilgeomorphic variables influence the distribution of the Las Vegas buckwheat, *Eriogonum corymbosum* Bentham *var. nilesii* (Reveal, 2004), in Clark County, NV. This study was designed to address critical gaps in the current scientific understanding of buckwheat habitats, especially regarding the soil chemical properties and surface characteristics of these spatially restricted areas.

This study was composed of the following components: (1) high-resolution mapping of surficial geology, (2) comprehensive field description of soil profile and soil surface characteristics, (3) laboratory assessment of soil chemical and physical properties, and interpretation of these combined data sets. Data were examined for statistical patterns or correlations among all variables, and interpreted for differences in soil geomorphologic, chemical, or biological processes between habitat classes.

Three study areas, at Coyote Springs, Gold Butte, and Bitter Spring (the White Basin), were selected based on their known buckwheat populations, and for their distinct but partially overlapping types of soil landforms. Approximately 30 sites at each study area were selected to compare habitat conditions to adjacent, similar landforms not currently supporting the species.

Surficial Geology

The surficial geology of each study area was mapped at the 1:3,000 scale, in ESRI ArcGIS 9.3, using field observations, airborne LiDAR data, NAIP imagery, and Quickbird imagery. The detailed maps produced as part this project have furthered understanding of buckwheat habitat characteristics.

In Coyote Springs, buckwheat was almost always found growing in flat-lying deposits of the late Pleistocene Las Vegas Formation, which was most likely exposed during middle Holocene erosion. In contrast, buckwheat at Gold Butte was found primarily along very young, thin, eolian and alluvial sediments deposited in swales between resistant outcrops of dipping gypsiferous strata. At Bitter Spring, buckwheat was associated with poorly-lithified siltstone, claystone and gypsum marl of the upper Horse Springs Formation (Thumb member) and relatively inactive geomorphic surfaces composed of very young alluvium adjacent to active arroyos. Surficial geologic mapping also permitted grouping of soil chemical and surficial data for statistical analysis and interpretation of trends. Sites were grouped (1) by buckwheat presence/absence as well as (2) by interpreted habitat class: Habitat, Potential habitat and Nonhabitat (see Chapter 2).

Combining data from all three sites suggest that Las Vegas buckwheat is most likely to be found: (1) on surfaces with few rock clasts – buckwheat is extremely unlikely to be found in areas of thick gravelly alluvium, (2) on exposures of the Las Vegas Formation (not covered by

thick gravels), (3) on calcareous and/or gypsiferous outcrops of the Horse springs Formation (not covered by thick gravels) and (4) in shallow sandy alluvium overlying gypsum bedrock.

Soil Chemistry

Chemical and physical analyses of 97 soil profiles at Coyote Springs, Bitter Spring and Gold Butte indicate that soils in which Las Vegas buckwheat currently grow are enriched in CaCO₃, and have higher available Fe, Ni, Ca, and Mg and have lower available P, Co, Mn, Zn, Cu, K, and N than non-habitat soils. The dataset suggests that: (1) Las Vegas buckwheat may be more tolerant of high concentrations of plant-available arsenic; (2) Las Vegas buckwheat may have either lower requirements for P, Co, Mn, Zn, Cu and N, or some enhanced physiological or symbiotic means of obtaining these elements from soils in which they are poorly available; (3) The buckwheat may have increased requirements for Fe, Ni, Ca, and Mg, although Ca:Mg ratios suggest Mg may not be an important indicator; and (4) Although we found few significant correlations between buckwheat sites and SO₄, we believe that localized occurrences of gypsum, halite and/or other soluble salts in buckwheat subsurface horizons may provide important soil microsites that promote higher Fe availability (Chapter 3). Thus, while the data in this study do not support obligate gypsophily of the Las Vegas buckwheat, we note that gypsum and other soluble salts in these highly calcareous substrates may still indirectly, through soil processes, prove critical for its habitat.

Surface Soil Chemistry and Characteristics

Surface data corroborate the soil profile and horizon data interpretations, and provide additional insights. First, this study identified a significant positive relationship between buckwheat habitat and percent cyanobacterial crust cover. Compared to non-buckwheat areas, buckwheat soil surfaces also tended to be low in available P, Mn, Co and have low percent of grass litter cover, while having increased CaCO₃, available Fe, Ni, Ca, As, and sometimes Mg and/or SO₄. Lastly, plant-available arsenic at the surface was greatest in buckwheat habitats, and because these amounts are high enough to impact agricultural crops, we speculate that they may play some role in the germination or establishment of buckwheat, or of other plants within buckwheat habitat. The effects of arsenic on buckwheat and other native plants are unknown. Our results confirm that buckwheat canopies do significantly differ from habitat interspaces. Buckwheat canopies were found to contain more organic C, total C, available B, Co, Cu, Mn, Zn, Cl and to exhibit higher EC values. Thus, many nutrients in the subsoil that could be potentially growth-limiting (e.g. Co, Mn, Zn, Cu – see chapter 3) were increased under buckwheat canopies.

Overall Conclusions

Combining the results from all components of this project, surficial geologic and soil profile and surface chemistry data indicate that Las Vegas Buckwheat is most likely to be found in environments with the following characteristics:

- (1) surfaces with few rock clasts buckwheat is extremely unlikely to be found in areas of thick gravelly alluvium
- (2) exposures of the Las Vegas Formation (not covered by thick gravels),
- (3) calcareous and/or gypsiferous outcrops of the Horse springs Formation (not covered by thick gravels)
- (4) shallow sandy alluvium overlying gypsum bedrock
- (5) in soils that are enriched in CaCO₃, available Fe, Ni, Ca, (maybe Mg) relative to non-habitat soils
- (6) in soils that are depleted in available P, Co, Zn, Cu, Mn and N relative to nonhabitat soils
- (7) in surface soils enriched in arsenic relative to non-habitat soils
- (8) in surface soils enriched in CaCO₃ available Fe, Ni, Ca relative to non-habitat soils
- (9) in surface soils depleted in P, Co, and Mn relative to non-habitat soils
- (10) on surfaces with greater percent cyanobacterial crust cover as compared to nonhabitat soils

This study demonstrates that 1:3,000 scale surficial geologic mapping, and 1.5 to 2.0 m resolution topographic raster data and landscape imagery are adequate to resolve changes between areas of buckwheat habitat, and other adjacent substrates which do not currently support the species.

The results of this study provide important, previously lacking, surficial geologic, soil chemical, and surface characterization data that help better constrain or define habitat criteria for *Eriogonum corymbosum* var. *nilesii*. Although additional data are needed, especially regarding the tissue chemistry and physiology of the Las Vegas buckwheat, the data described in this report should provide a sound basis for future habitat modeling, and/or germination study of this rare and potentially threatened or endangered species in Clark County.

Recommendations

- Results from this study found that the three sites studied had specific differences in many of the factors measured. Had this study been designed without including such spatially distinct study areas, very different, and potentially misleading results would have produced. We strongly recommend that future studies for the Las Vegas buckwheat or other restricted habitat species include, as much as possible, the full array of landscapes, soil types, and plant communities known or available for study.
- An analysis of buckwheat tissue chemistry is strongly recommended for the same sites as this study. This would help confirm whether variables found to be significant in this study reflect general soil environmental requirements, or instead whether they reflect specific plant nutrient requirements. Data that would enable comparison of buckwheat

physiology and chemistry to that of spatially associated species might also improve our understanding of edaphic controls on habitat viability.

- This study measured plant-available nutrients. We strongly recommend that an analysis of total soil chemistry be performed on the same (currently archived) samples as used in this study. Total chemical analysis would shed light on the geologic variables between study areas and between buckwheat and non-buckwheat sites. In addition, more detailed mineralogical analyses would greatly assist in determining the sources of plant nutrients, and therefore help to interpret processes controlling nutrient availability and constraining and modeling parameters for probable buckwheat habitats elsewhere.
- We recommend future research on soil conditions required for germination or establishment.
- We recommend future research on possible roles and/or competition among species within the buckwheat habitat communities.
- We recommend future research into how buckwheat plants might alter the chemistry of their substrates once they have been established (bioaccumulation), and what timescales (years, decades) might be involved.
- We strongly recommend future research into the relationships between biological soil crusts and buckwheat (and/or other important vascular plants).
- We strongly recommend future research into the controls that soil water may have on buckwheat habitat. Future insolation modeling at finer scales than this study may shed light on buckwheat habitats. Information is needed on soil infiltration, permeability and water status in buckwheat soils.

Chapter 1: Project Introduction

Brenda J. Buck and Colin R. Robins

I. Description of the Project

The purpose of this project was to determine what, if any, soil-geomorphic variables might influence the distribution of *Eriogonum corymbosum* Bentham var. *nilesii* (Reveal, 2004), in Clark County, NV. This species is one of several sensitive or selective habitat species thought to be restricted to gypsum-rich substrates. However, its fragmented distribution suggests that some gypsiferous soils are unsuitable for its habitation while other low-gypsum soils may support thriving populations. At present there exists no explanation as to why individuals may grow in one location, but not in a similar location a short distance away, a lack of understanding which has also been noted for other rare plants in Clark County (Etyemezian et al., 2010). This study was designed to address these uncertainties and to provide more precise soil and surficial geologic criteria for the definition of *E. corymbosum* var. *nilesii* habitat in Clark County.

II. Background & Need for the Project

Eriogonum corymbosum var. *nilesii* (Reveal, 2004), is commonly called either "Niles' wild buckwheat," "Las Vegas buckwheat", or "golden buckwheat." In this report, this species is generally referred to as either "Las Vegas buckwheat" or more simply "buckwheat." Accordingly, we also use "non-buckwheat" to describe sites or areas in which *E. corymbosum* var. *nilesii* is absent for at least 50-100 m in all directions.

The Las Vegas buckwheat is considered a sensitive or special status species by the BLM and a candidate species for federal protection (Morefield, 2004; USFWS, 2007). The species is at risk due to its restricted habitat distributions and the vulnerability of habitat areas to urban development, off-road vehicle use, mining operations, illegal dumping, and wildfire (Morefield, 2001; USFWS, 2007). Clark County, NV, encompasses most known populations of this plant, but the species has also been documented in Washington and Kane Counties in Utah, and Mohave and Coconino Counties, Arizona (Morefield, 2001; USFWS, 2007; Mrowka, 2008; Ellis, 2009; Ellis et al., 2009; Utah Board of Water Resources, 2010). Some uncertainty exists regarding the true taxonomy of the *E. corymbosum* var. *nilesii* occurrences outside Nevada due to complicating factors that include: an extensive history of taxonomic revision, multiple defined varieties of E. corymbosum that require expertise to correctly distinguish, and the possibility of genetic hybridization (Reveal, 1967; Morefield, 2001; Ellis, 2009; Ellis et al., 2009; Utah Board of Water Resources, 2010). Should the presently defined E. corymbosum varieties become further revised or divided in the future, then the distributions of the nilesii variety could prove to be even more restricted and more threatened than previously thought. Projections for continued urban development and population growth in Nevada and the southwestern U.S.A., as well as uncertain future climate trends, underscore the strong need for greatly improved knowledge of Las Vegas buckwheat habitat characteristics, especially soil properties.

Final Report (CH1)

The relationship between Las Vegas buckwheat and gypsum substrates is not yet fully understood. Eriogonum corymbosum var. nilesii is one of several selective habitat species long considered to be restricted to gypsum soils, either as a gypsophile (whether facultative or obligate) or a gypsocline (Meyer, 1986; Mrowka, 2008; Drohan & Merkler, 2009). Its habitat is specifically defined as occurring on and/or near gypsum substrates on badlands surfaces or sideslopes, or within thin, sandy alluvium over gypsum bedrock in washes (Morefield, 2001; Drohan & Merkler, 2009). However, its fragmented distribution suggests that, for reasons not previously determined, not all gypsum-rich soils are suitable for its habitation. Furthermore, Drohan and Merkler (2009) have used buckwheat tissue and soil analyses to suggest that the species is not a true gypsophile. Apart from the paper by Drohan & Merkler (2009), a preceding report by Drohan & Buck (2006), and a study by Boettinger et al. (2010), we are aware of no other detailed soil chemical data from buckwheat habitat, especially for habitat sites outside the Las Vegas Valley. Without chemical data from individual genetic soil horizons, it is not possible to elucidate relationships between buckwheat and gypsum soils, nor to more precisely define the physical and chemical requirements of viable buckwheat habitat. Data regarding the Las Vegas buckwheat's tolerated range of soil chemical and physical properties are also requisite in order to design effective germination studies.

Soil profile, soil chemical, and soil-geomorphic spatial data are often inadequate in published studies of desert plants. Though very little research has been done specifically on buckwheat, a handful of other studies in southern Nevada and neighboring regions have attempted to identify the factors most critical to the establishment, distribution, and survival of other selective habitat or proposed "gypsophile" plant species, for example Arctomecon californica and Arctomecon merriami (Nelson & Harper, 1991; Sheldon, 1994; Sheldon Thompson & Smith, 1997; Hickerson & Wolf, 1998; Boettinger et al., 2010). However, most of these and other published studies on purported gypsophiles either exclude soil characterization entirely, or limit their study to soil surface crusts or generalized mineralogical trends (i.e., for gypsiferous, calcareous, or quartz-dominated substrates). Some studies (Meyer, 1986; Meyer & García-Moya 1989; Nelson & Harper 1991; Sheldon Thompson & Smith, 1997) do analyze soils under target species but sample by depth rather than by genetic horizon and do not provide the soil profile morphology data needed to rule out potential mixing of two or more distinct soil horizons, each of which can have a different effect on plant dynamics. Even studies that do specifically address genetic horizon characteristics (e.g., Drohan & Merkler, 2009) may lack detailed soil or surficial geologic maps, do not define inhabited or non-inhabited sites in terms of spatial extent or geomorphic landform, or perform full plant-essential element analyses.

Predictive habitat modeling requires both soil chemical data and also, due to the expense of soil sample analysis, the ability to locate candidate habitat areas via remote sensing or mapping of soils, rock types, and/or landforms. (e.g., Boettinger et al, 2010). Despite the lack of soils data and the ambiguity of buckwheat's possible gypsophily, classification of gypsum substrates using ASTER satellite data has facilitated identification of previously unrecognized buckwheat habitat in Clark County (Clark County DCP, unpublished data, 2009). Nevertheless,

soil and geologic data sets are still needed to refine these efforts. Publicly available NRCS soil surveys and geologic maps for most areas in the western United States are commonly too coarse for the purposes of defining soil habitat characteristics, and most plant studies provide insufficient data for soil taxonomic classification. Well-intended attempts to correlate plant distributions based on substrate characteristics sometimes employ outdated map units which confuse bedrock lithology with soil type, geologic unit names, and landform type (e.g., The Nature Conservancy, 2007, Appendix 4, Table A) – these groups are not comparable because each indicates different concepts and spatial scales of landscape classification. These shortcomings and the need for better soils-based research were acknowledged in the report by the Nature Conservancy on rare plants in Clark County (The Nature Conservancy, 2007), and by Hamerlynck et al. (2002), who note that soil geomorphologic context is a vital part of interpreting vegetation structure and dynamics in arid landscapes.

Several general soil geomorphic and biological factors are already known to influence plant dynamics (e.g., growth, nutrient uptake, ecological relationships, etc.) on gypsum soils, including physical surface crusts, biological surface crusts, soil chemistry, and ecological dynamics (competition, refugia). The role of each these factors must be considered when evaluating mechanisms that control plant distributions.

Physical surface crusts may directly influence seed germination and plant establishment either by resisting rooting, or by providing a smooth surface that causes seeds to blow off exposed and weathered gypsum substrates (Meyer & García-Moya, 1989; Meyer et al., 1992; Escudero et al, 1997; Rubio & Escudero, 2000). In this way, restrictive physical gypsum crusts can be a more important factor than subsoil nutrient content (Meyer et al., 1992), and in some cases a veneer of alluvium or other sediment over gypsum subsoils may be required to permit germination and growth (Meyer & García-Moya, 1989). The presence of non-indurated surface horizons, as well as established biological cover, also influences infiltration rates and soil water dynamics. Physical crusts, desert pavements, soil textural contrasts, the degree of soil profile development, and the configuration of indurated or salt-plugged subsurface horizons greatly influence soil hydrology and the availability of seasonal moisture (Meyer & García-Moya, 1989; Hamerlynck et al., 2000; Hamerlynck et al., 2002). Soil moisture is further determined by topographic parameters such as slope angle and slope aspect. These factors, combined with surface erosion, can enhance or diminish the role of physical soil crusts on plant establishment in gypsum soils especially (Meyer et al., 1992; Guerrero-Campo et al., 1999; Pueyo & Alados, 2007).

Biological soil crusts (BSCs) can have equally crucial but even more complex effects on vascular plants, by directly or indirectly influencing seed establishment, surface erosion dynamics, soil moisture content, soil temperature, and soil nutrient availability (West, 1990; Prasse & Bornkamm, 2000; Belnap et al., 2001; Belnap, 2006; Briggs & Morgan, 2008; Caldwell et al., 2009). BSCs are soil surface complexes comprised of microorganisms and sediments, and include distinct assemblages of mosses, lichens, bacteria, fungi, liverworts, or algae (West, 1990; Belnap et al., 2001). Gypsum soils in the western U.S. commonly support

high BSC and cover and diversity of cyanobacteria, lichens and mosses (Belnap et al., 2001). The composition, properties, and density of BSCs may influence microclimate at the soil surface, and therefore seed germination and nutrient cycling (Harper & Pendleton, 1993; Caldwell et al., 2009), however, the nature and magnitude of the effect can be highly species specific, depending on both crust and plant species (Escudero et al., 2007). Harper and Belnap (2001) note that cyanobacteria and *Collema* sp. may fix N, and that certain types of crusts, especially those comprised of cyanobacteria and/or *Collema* sp. may greatly increase the uptake by short-lived and shallow-rooted plants of several other essential elements, including Cu, K, Mg, and Zn. However, the same study also notes that this effect is greatly diminished for deeply rooted shrubs (Harper & Belnap, 2001). Under the right conditions, cyanobacteria may also suppress seed establishment by forming a smooth crust that prevent seeds from coming to rest in some sandy substrates (Prasse & Bornkamm, 2000). BSCs therefore represent a complex set of factors and processes that must be considered as possible influences on desert shrub habitats, especially on gypsum soils.

Physical and biological crusts vary spatially with vegetation in arid environments. Over time (10^0 to 10^2 y), the type of soil cover both reflects and influences surface stability, which is controlled by complex feedback loops among geomorphic processes, biota, and climate. The generally sparse plant canopy cover of arid environments is a well-known result of low moisture availability. As plants compete for limited water and available nutrients, zones of enhanced soil water availability form as a consequence of differential runoff and infiltration rates in soils under plants versus soils in interspaces between plants (Schlesinger et al., 1996; Caldwell et al., 2008; Brady & Weil, 2011). Over time, continued growth, water uptake, and nutrient cycling by the vegetation amplifies differences between canopy and interspace soils, producing "fertile islands" of generally higher nutrient and organic matter content under canopies (Schlesinger et al., 1996; Caldwell et al., 2008; Brady & Weil, 2011). Physical differences affecting infiltration and runoff also develop, and feedbacks may arise between soil cover type, soil hydrology, and soil nutrient content. Complicating matters, biological soil crusts may be as significant as shrubs in driving or arresting this divergence of canopy and interspace soil properties. For example, moss-lichen crusts can enhance the availability of many cations in the soil solution, potentially subduing chemical disparities between canopy and interspace soils (Williams, 2011). Thus, comparison of canopy and interspace soil characteristics can provide insights into important, scale-dependent chemical and hydrological processes that are vital to vegetation dynamics in arid systems (Schlesinger et al., 1996; Caldwell et al., 2008; Williams, 2011). These considerations are especially vital for any study of plants on gypsum soils within arid environments.

Given the complex linkages and lack of detailed studies on soil surface characteristics, parent material characteristics, soil profile development, and surface (geomorphic) processes, much more research is required to adequately describe the habitat requirements of the Las Vegas buckwheat. Accordingly, this study sought to identify edaphic controls on the buckwheat distributions in Clark County by analyzing data from three important habitat components briefly mentioned in the discussion above, namely: surficial geology, soil profile characteristics, and soil

surface characteristics including physical features and biological crusts. This work is an initial step towards a better understanding of abiotic controls on the Las Vegas buckwheat distribution.

III. Management Actions Addressed

This was an information gathering project, intended to improve understanding of a special status, potentially threatened or endangered, species in Clark County, and to provide data to facilitate better predictive habitat modeling. Better habitat modeling is warranted given the difficulty of locating isolated populations of the Las Vegas buckwheat during field surveys (e.g., ICF Jones & Stokes, 2010), and also due to the restriction of most, if not all, existing soil chemical data to the Las Vegas Valley.

IV. Study Area Locations

Three study areas were selected from among the known population clusters of Las Vegas buckwheat in Clark County, NV (FWS, 2007; Mrowka, 2008). Selection of these areas was intended to enable comparison between spatially discontiguous areas with potentially distinct surficial geology. The three study areas were: (1) Coyote Springs, located ~2 km southeast of the intersection of U.S. Highway 93 and State Route 168 near the northern border of Clark County; (2) Gold Butte, located immediately east of New Gold Butte Road, approximately ~10 km south of Whitney Pocket; and (3) Bitter Spring, located north of Lake Mead National Recreation Area, in the White Basin between the Muddy Mountains, Bitter Ridge, and the Longwell Ridges (**Figure 1**). Approximately 30 sites within each study area were selected for targeted study in order to compare buckwheat habitat conditions to adjacent, similar landforms not currently supporting the species.

V. Goals and Objectives of the Project

Our objectives were (1) to identify *patterns* of soil and land-surface properties that might control or influence distributions of the Las Vegas buckwheat, and from those correlations (2) to interpret which soil geomorphologic *processes* or *characteristics* most directly influence Las Vegas buckwheat. A secondary goal was to determine what spatial scale is needed to adequately resolve soil geomorphic variability within the study areas and habitat classes. Project components designed to satisfy these objectives included: (1) high-resolution mapping of surficial geology, (2) comprehensive field description of soil profile and soil surface characteristics, (3) laboratory assessment of soil chemical and physical properties, and interpretation of these combined data sets.

VI. Methods

Methods for each of the project components are detailed separately in the chapters of this report. Within each profile, genetic soil horizons were described based on attributes including: thickness, structure, color, boundary character, ped and/or void surface features, secondary mineral concentrations, porosity, roots, effervescence, and percent gravel content. Soil samples

were collected and analyzed in the UNLV Environmental Soil Analytical Laboratory for pH, EC, total C, N, and S, percent $CaCO_3$, Cl^- , $SO_4^{2^-}$, NO_3^- , plant available cations, cation exchange capacity, and soil texture. Additional soil profile and site data collected included geomorphic information, , parent material (lithology), biological soil crust coverage, and surface clast coverage.

Figure 1: General locations of the three study areas of Gypsum Soils Analysis Technical Conditions (UNLV-2005-609F). *Base data from Clark County GISMO and the USGS*.

References

- Belnap, J., Kaltenecker, J.H., Rosentreter, R., Williams, J., Leonard, S., and eldridge, D., 2001.
 Biological soil crusts: Ecology and management. Bureau of Land Management Technical Reference 1730-2. Denver: Department of the Interior. 119 pages.
- Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes 20:3159-3178.
- Boettinger, J.L. Busch, G.A., Fonnesbeck, B.B., Lawley, J.R., Croft, A.A., Edwards, T.C., and MacMahon J.A., 2010. Soil-landscape relationships and soil properties associated with rare plants in the eastern Mojave Desert near Las Vegas, Nevada, USA. Proceedings of the 19th World Congress of Soil Science, 1 – 6 August, 2010, Brisbane, Australia. Published on DVD.
- Brady, N.C., & Weil, R.R., 2007. The Nature and Properties of Soils (14th Edition, revised). Prentice Hall. 980 pages.
- Briggs, A. and Morgan, J.W., 2008. Morphological diversity and abundance of biological soil crusts differ in relation to landscape setting and vegetation type. Australian Journal of Botany 56(3): 246-253.
- Caldwell T.G., McDonald, E.V., and Young, M.H., 2009. The seedbed microclimate and active revegetation of disturbed lands in the Mojave Desert. Journal of Arid Environments 73: 563–573.
- Caldwell, T.G., Young, M.H., Zhu, J., and McDonald, E.V., 2008. Spatial structure of hydraulic properties from canopy to interspace in the Mojave Desert. Geophysical Research Letters 35 (L19406), doi:10.1029/2008GL035095.
- Drohan, P.J. and Merkler, D.J., 2009. How do we find a true gypsophile? Geoderma 150: 96-105.
- Drohan, P.J., and Buck, B.J., 2006. Final Report: Soil physical, chemical, and mineralogical properties and their effect on *Eriogonum corymbosum* var. and *Arctomecon californica* in North Las Vegas.
- Ellis, M.W., Roper, J.M., Gainer, R., Der, J.P., and Wolf, P.G., 2009. The taxonomic designation of *Eriogonum corymbosum* var. *nilesii* (Polygonaceae) is supported by AFLP and cpDNA analyses. Systematic Botany 34(4): 693-703.
- Ellis, Mark W., 2009. Speciation, species concepts, and biogeography illustrated by a buckwheat complex (Eriogonum corymbosum). Ph.D. Dissertation, Utah State University.
- Escudero, A., Martínez, I., de la Cruz, A., Otálora, M.A.G., and Maestre, F.T., 1997. Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. Journal of Arid Environments 70: 18-28.
- Etyemezian, V., King, J., Zitzer,S., Nikolich, G., Gillies,J., and Mason, J., 2010. Sediment Transport to White-Margined Penstemon Habitat (*Penstemon albomarginatus*). Project Report (2005-NSHE-502A-P). Prepared for the Clark County, Nevada, Department of Air Quality and Environmental Management Desert Conservation Program. 109 pages.

- FWS (U.S. Fish and Wildlife Service), 2007. Species assessment and listing priority assignment form for *Eriogonum corymbosum* var. *nilesii*. Unpublished report from agency files, accessed online: http://forestry.nv.gov/wp-content/uploads/2009/05/buckwheat_usfws.pdf
- Guerrero-Campo, J., Alberto, F., Hodgson, J., García-Ruiz, J.M., and Montserrat-Martí, G., 1999. Plant community patterns in a gypsum area of NE Spain, I.: Interactions with topographic factors and soil erosion. Journal of Arid Environments 41: 401–410.
- Hamerlynck , E.P., McAuliffe, J.R., and Smith, S.D., 2000. Effects of surface and sub-surface soil horizons on the seasonal performance of *Larrea tridentata* (creosotebush). *Functional Ecology* 14: 596–606.
- Hamerlynck, E.P., McAuliffe, J.R., McDonald, E.V., and Smith, S.D., 2002. Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83 (3): 768-779.
- Harper, K.T. and Pendleton, R.L., 1993. Cyanobacteria and cyanolichens: Can they enhance availability of essential minerals for higher plants? Great Basin Naturalist 53(1):59-72.
- Hickerson, L. L. and Wolf, P.G., 1998. Population genetic structure of Arctomecon californica Torrey & Fremont (Papaveraceae) in fragmented and unfragmented habitat. Plant Species Biology 13: 21-33.
- ICF Jones & Stokes, 2010. Las Vegas bearpoppy and Las Vegas buckwheat inventory, Final Project Summary Report. (ICF J&S Project 00271.09.) Sacramento, CA. Prepared for: Clark County, Nevada, Department of Air Quality and Environmental Management Desert Conservation Program. 6 pages.
- Meyer, S.E. and García-Moya, E., 1989. Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. Journal of Arid Environments 16: 147-155.
- Meyer, S.E., García-Moya, E., Lagunes-Espinoza, L.d.C., 1992. Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. Journal of Vegetation Science 3(4): 429-438.
- Morefield, J.D., Ed., 2001 (compiled and updated in 2004). Nevada Rare Plant Atlas. Nevada Natural Heritage Program, Nevada Department of Conservation and Natural Resources. Published online: http://heritage.nv.gov/atlas/eriogcorymniles.pdf. Alternate citation: Nevada Natural Heritage Program, 2004. Rare plant fact sheet for *Eriogonum corymbosum* Bentham var. (unnamed) Reveal, Las Vegas Buckwheat.
- Mrowka, R., 2008. A petition to list the Las Vegas buckwheat (*Erigonun* (sic) *corymbosum* var. *nilesii*) as threatened or endangered under the U.S. Endangered Species Act. Submitted by the Center for Biological Diversity.
- Nelson, D. R. and K. T. Harper, 1991. Site characteristics and habitat requirements of the endangered dwarf bear-claw poppy (*Arctomecon humilis* coville, Papaveraceae). Great Basin Naturalist 51(2): 167-175.
- Prasse, R. and Bornkamm, R., 2000. Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology 150 (1/2): 65-75.

- Pueyo, Y. and Alados, C.L., 2007. Abiotic factors determining vegetation patterns in a semi-arid Mediterranean landscape: Different responses on gypsum and non-gypsum substrates. Journal of Arid Environments 69: 490–505.
- Reveal, J. L. 2005. Polygonaceae: subfamily Eriogonoideae. IN: Flora of North America Editorial Committee, Eds., Flora of North America. 12 volumes. New York: Oxford University Press. Pages 218 – 478.
- Reveal, J. L., 2004. New entities in *Eriogonum* (Polygonaceae: Eriogonoideae). Phytologia 86(3): 121-159.
- Reveal, J.L., 1967. Notes on Eriogonum V: A revision of the *Eriogonum corymbosum* complex. The Great Basin Naturalist 27(4): 183-229.
- Rubio, A. and Escudero, A., 2000. Small-scale spatial soil-plant relationship in semi-arid ypsum environments. Plant and Soil 220: 139–150
- Schlesinger, W.H., Raikes, J.A., Hartley, A.E., and Cross, A.F., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77(2): 364-374.
- Sheldon Thompson, S. K. and Smith, S.D., 1997. Ecology of *Arctomecon californica* and *A. merriami* (Papaveraceae) in the Mojave Desert. Madroño 44 (2): 151-169.
- Sheldon, S.K., 1994. Life history biology and soil characteristics of two species of Arctomecon (Papaveraceae). M.S. Thesis. University of Nevada Las Vegas, Department of Biological Sciences. 69 pages.
- The Nature Conservancy, 2007. A conservation management strategy for nine low elevation rare plants in Clark County, Nevada. Reno: The Nature Conservancy of Nevada Field Office. 390 pages.
- Utah Board of Water Resources, 2010. Lake Powell Pipeline Draft Study Report 12: Special status plant species and noxious weeds assessment. December, 2010. Accessed online: http://www.fws.gov/filedownloads/ftp_region6_upload/Dave%20Carlson/12%20Special %20Status%20Plants%20and%20Noxious%20Weeds.pdf
- Williams, A.J., 2011. Co-development of biological soil crusts, soil-geomorphology, and landscape biogeochemistry in the Mojave Desert, Nevada, U.S.A. – Implications for ecological management. Ph.D. Dissertation. University of Nevada Las Vegas, Department of Geoscience. 386 pages.
- West, 1990. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research 20: 179-209.

Chapter 2: Mapping: Surficial Geology, Insolation, and Habitat Classes

Colin R. Robins and Brenda J. Buck

I. Purpose

The development of detailed (1:3,000 scale) surficial geologic maps was an important project directive intended to improve both understanding and definition of existing Las Vegas buckwheat habitat. These maps were also produced with the objective of facilitating identification of previously unknown buckwheat populations or potential buckwheat habitats in future remote sensing and/or field projects.

Surficial geologic maps commonly delineate unconsolidated sedimentary materials that occur as a veneer over bedrock. These maps illustrate the distribution of geomorphic surfaces and their associated sedimentary deposits. Geomorphic surfaces are mappable features defined as "portions of the landscape specifically defined in space and time" (Ruhe, 1969), and may form via deposition, erosion, or some combination of both. Surficial geologic maps are interpretations of the genesis, history, and characteristics of soils, surfaces, and landforms. Their study can effectively identify the surface processes most influential in shaping the landscape, and can yield insight into the timing of key changes in climate and landscape stability. Each map unit is an interpretation of a particular suite of variables including stratigraphic relationships among and between different deposits, topographic characteristics of individual landforms (e.g. inset or nested relationships), surface morphology (e.g. bars& swales on alluvial landforms), drainage patterns, degree of soil development (especially carbonate morphology), sediment size and sorting (soil texture), substrate lithology (soil mineralogy), slope angle (soil stability), the presence of desert pavement or biological surface crusts (soil stability and hydrology), and the relative importance of wind, water, or gravity in locally eroding or depositing material. Because landform morphology, hydrology, sedimentation rates, rock weathering and soil formation rates all influence and create feedbacks with vegetation dynamics, this type of map can prove very useful for predicting vegetation types and densities in arid environments.

II. Methodology

General study locations were selected based on their known populations of *E. corymbosum* var. *nilesii* and also based on their overlapping ranges of landform and soil types (Chapter 1). We situated study area borders in order to best encompass the full range of geomorphic surfaces and landforms expressed at each site. We also attempted to ensure similar study area sizes and comparable degrees of landscape complexity between the three locations.

The 1:3,000 map scale best suited the needs and resources of this project. With this scale, we sought to maximize the ability of our data to explain differences between existing habitats and adjacent, similar soil landforms that do not currently support *E. corymbosum* var. *nilesii* but which could theoretically become habitat in the future. We also hoped the scale of study and data collected would help explain why these "potential habitat" areas are not populated. Existing NRCS soil surveys (1:24,000 or coarser) and geologic maps (1:100,000 or coarser) of the study

Final Report (CH2)

areas are currently insufficient for these purposes because their map units, by definition, incorporate a high degree soil and surficial geologic variability. Most relevant to the study of desert shrubs, the 1:3,000 scale permits delineation of landforms as small as $\sim 5 \text{ m}^2$, and linear features, like rills or gullies, that are as narrow as 1.5 m. Such landforms may provide critical niche space for individual shrubs, but cannot be resolved at a smaller (i.e., broader or coarser) spatial scale.

Using field and remote sensing data, we differentiated geomorphic surfaces and landforms based on morphostratigraphic relationships, surface characteristics (including physical and biological crusts), sediment texture and lithology, soil profile characteristics, and vegetation. Planar geomorphic surfaces and their side slopes were sometimes distinguished from one another as separate map units because of the need to capture factors that could potentially influence habitat suitability, such as changes in hydrology and surface clast cover. By convention, authors of most other surficial geologic maps tend to combine a landform and its side slopes into one unit. For additional detail on the field methodology for mapping of soils, surficial geology, and landforms, see Peterson (1981) and Compton (1985). Mapping was done between September 2009 and March 2011, in the field and also remotely using ESRI ArcGIS 9.3 software. Several types of digital base-map data were used to support field-based landform interpretations.

Light detection and ranging (LiDAR) topographic data collected by Airborne1 in November, 2009, for this project, were used to generate a 1.5-meter resolution digital elevation model (DEM), hillshade, slope map (slopeshade), aspect map, and 1-meter resolution topographic contour map for each study area. These LiDAR-based datasets helped constrain contacts between map units. For instance, slope maps and contour lines helped delineate the transition between planar alluvial fan surfaces and steep colluvial side slopes, or narrow outcrops of well-lithified bedrock. ESRI ArcGIS 9.3 was used to convert LAS-format LiDAR data into ESRI grid-format DEMs, and the Surface Analysis tool was used to develop all derivative data sets from the DEM.

Quickbird imagery for Clark County, made available through the Southern Nevada Public Lands Management Act Round 5 Conservation Initiative Program, was also used. Additional base data used for mapping included color aerial photomosaics from the National Agricultural Imagery Program (NAIP), and 10-meter USGS DEMs. Final surficial geologic maps include many of these data sets superimposed on top of one another as semi-transparent, brightness-andcontrast-adjusted rasters. The shaded relief map for each study area was made by superimposing the hillshade raster on a slopeshade. Slopeshade maps are an alternative take on shaded relief maps, in which steeper slope angles are displayed as darker areas, and flatter surfaces as lighter (method from P.K. House, personal communication, 2009), without obscuring landforms in shadow. Our combination of raster base data was tailored to each study area in order to best illustrate local landform morphology and relief.

Solar insolation

Solar insolation is a measure of the total amount of energy imparted upon the earth's surface from sunlight. Insolation affects soil moisture content, soil temperature, freeze-thaw, photosynthesis, and many other edaphic, ecological, and geomorphic processes. To estimate solar insolation for any given point or target area, a three-dimensional model, or DEM, of that target's viewshed is needed. The viewshed consists of all land surface area visible from the target of interest. Any landform protruding above the target's elevation between the target and the horizon may shade the target and reduce the amount of solar radiation received, even if only during sunrise or sunset. Failure to incorporate the entire viewshed will lead to overestimation of total yearly insolation. Similarly, high resolution DEMs are best for insolation modeling because minor topographic features obscured by coarse pixel sizes also affect local insolation over the course of a year.

LiDAR data were acquired for the viewshed of each study area, however, available computing power for this study was insufficient to use the very large LiDAR data sets for insolation calculations. Instead, we combined high resolution LiDAR data within each study area with lower resolution, less memory-intensive 10 m USGS DEMs covering the viewshed. Pixel resolution of the LiDAR DSM was reduced from 1.5 m to 5 m, and resolution of the USGS DEM was artificially increased from 10 m to 5 m. Cells overlapping the study area were clipped out of the USGS DEM, and the LiDAR DSM was patched in, creating one 5 m DEM for each study area and viewshed. This DEM could be analyzed on a standard computer, yet permitted more accurate insolation modelling of fine-scale topography within the study area, while also incorporating the shading effects of adjacent mountains.

Insolation values for soil profile sites were calculated using the Points Solar Radiation tool in ArcGIS 9.3. For illustrative purposes, rasters showing insolation variability across the whole viewshed were also produced using the Area Solar Radiation tool. Clearly discernable artifacts (walls or cliffs) appear at the edge of each study area, however, these artifacts are not large enough to influence insolation calculations at the soil profile sites. All calculations were run for the whole year using a monthly interval, a sky size of 200 cells, and assuming uniform sky.

Map Unit Nomenclature

Surficial geologic map units follow conventional alpha-numeric nomenclature. The first character of the unit name indicates the age of the geomorphic surface or deposit: \mathbf{Q} , Quaternary; \mathbf{T} , Tertiary. The second character describes the type of deposit: \mathbf{a} , alluvium; \mathbf{c} , colluvium; \mathbf{ea} , mixed eolian & alluvial sediments; \mathbf{p} , playa; \mathbf{lv} , eroded Las Vegas Formation; \mathbf{x} , anthropogenically disturbed; **rock**, well-lithified sedimentary bedrock; **ss**, poorly lithified sedimentary rock; **gyp**, gypsum bedrock; **tuff**, tuffaceous (volcaniclastic) bedrock. Additional descriptor suffixes were used to indicate stratigraphic relationships (i.e., 1 is oldest, 2 younger, etc.) or landscape position (e.g., summit; or erode = sideslope).

Habitat Classification Systems

The relationship between buckwheat distributions, map units, and soils was considered in two ways. Because of the timing and scope of this project, and the need to complete preliminary mapping before choosing sample sites, it proved necessary to define buckwheat habitat classes prior to soil profile sampling and chemical analysis. Thus, habitat classifications are based on surficial geologic characteristics and observed distributions of *E. corymbosum* var. *nilesii*.

First, soil profile sites and map units were classified on an objective presence or absence basis. Using this system, sites and map units are either "Buckwheat," known to contain one or more individuals of *E. corymbosum* var *nilesii*, or they are "Non-buckwheat," and the species is known to be absent. This system is based on field observations, and works especially well at Gold Butte and Bitter Spring, where map unit polygons are small (see Results), and distribution of buckwheat within map polygons is fairly uniform. All sites within these two study areas can be quickly classified using the same presence/absence definition as the polygon in which they are located. The only spatial constraint is the map unit polygon boundary.

Conversely, the presence/absence definition at Coyote Springs is site specific, rather than map unit polygon specific. This minor distinction of "non-buckwheat" site definition at Coyote Springs is caused primarily by the greater spatial extent of its landforms, surficial geologic units, and, consequently, map polygons (see Results). Moreover, some, but not all, of the large map unit polygons at Coyote Springs, each of which represents a single, continuous, and apparently homogenous soil geomorphic surface, were observed to contain both large areas in which buckwheat was present, and large areas in which it was absent. These polygons could not be subdivided based on any soil or surficial geologic criteria. Thus, a Coyote Springs map unit polygon classified as "Buckwheat" may contain areas or sites of "Non-buckwheat", and it was necessary to develop a secondary, distance-based definition to the habitat classification of Coyote Springs study sites. Thus, designation of a site as "Non-buckwheat" at Coyote Springs means that either: the species is absent for the full spatial extent of the particular surficial geologic map unit polygon in which the site occurs (i.e., the same definition as in the other study areas) or it is absent for a distance of at least 50 m in all directions from the soil sampling location. At Gold Butte and Bitter Spring, "non-buckwheat" sites indicate that there are no Las Vegas buckwheat plants within the entire map unit polygon in which the site is located. Many of the polygons at Gold Butte and Bitter Spring were significantly smaller than 50 m, and no single, objective definition for presence/absence could be found that worked for all three field areas in this study.

The second, more subjective habitat classification system is site specific. Buckwheat sites are simply re-named "Habitat", however, non-buckwheat sites are further subdivided into either "Non-habitat" or "Potential Habitat" based on field interpretations of soil and surficial geologic attributes. "Non-habitat" sites in this system are those in which buckwheat are absent, and in which soil-geomorphic conditions are inconsistent with habitat characteristics as generally observed in the given study area. "Potential Habitat" sites are those in which buckwheat are

absent, but which bear close soil surface and/or geomorphic similarity to habitat characteristics and are thus considered likely to be able to support buckwheat.

The first classification system, Buckwheat/Non-buckwheat, is objective and statistically significant differences between the two would support the hypothesis that soil conditions are fundamentally distinct between each class. The second system, Habitat/Non-habitat/Potential habitat, is partly objective and partly subjective. In this comparison we test our data against a hypothesis of soil habitat suitability. We hypothesize that buckwheat could grow in the "Potential Habitat" sites, but have not yet become established for unknown reasons. Thus, our hypothesis in this case requires (1) that there should be no statistically significant differences between "Habitat" and "Potential Habitat" sites, and also (2) that significant differences should exist between each of those two classes and "Non-habitat".

Statistical Analysis of Map Units

A series of chi-square tests quantified the presence/absence of buckwheat as a function of aspect classes and surficial geologic map units. Pearson Chi-Square tests for independence were completed at the 0.05 level of significance in IBM SPSS Statistics 19. Yates Continuity Corrections were used for 2x2 categorical comparisons. Aspect classes (N, E, S, W) were compared against the presence/absence of buckwheat, both for all aspect classes combined and then for each aspect class against the others. Similarly, surficial geologic map units were compared against the presence/absence of buckwheat. The dominant habitat unit was also compared to the other map units at each site.

III. Results

Results from surficial geologic mapping are presented below for each study area in succession: first Coyote Springs, then Gold Butte, followed by Bitter Spring. For each area, we display NAIP imagery, followed by NRCS web soil survey data, solar insolation data, a reduced version of this study's surficial geologic map, an explanation of map unit descriptions, photographs of representative map units, and a figure depicting map units re-interpreted into buckwheat habitat suitability classes.

Additional habitat class summary data, and statistical results from the chi-square tests are also presented.

A. Surficial Geology of the Coyote Springs Study Area

Figure 2-1: Contrast-enhanced NAIP imagery (USDA-FSA, 2006) of the Coyote Springs study area, superimposed over a LiDAR-derived slopeshade.

Figure 2-2: NRCS Soil Survey data for the Coyote Springs study area, mapped at 1:24,000 (Soil Survey Staff, 2006; Soil Survey Staff, 2011). Three distinct survey units are identified. Data in this figure have been modified for display purposes and are shown beyond their intended scale – these soil associations cannot reveal small areas of distinct soil types occurring within the area.

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

Figure 2-4: Surficial Geologic map of the Coyote Springs study area (reduced from original 1:3,000 scale). The map unit key is shown on the next page (Figure 2-5).

Figure 2-5: Key to the Coyote Springs surficial geologic map (Figure 2-4).
Explanation of Coyote Springs Surficial Geologic Map Units

Qa5: Alluvium of active channels, rills and gullies (modern to late Holocene). Active wash and fan deposits composed of poorly to moderately sorted gravel, sand, and silt forming fresh bar and channel morphology and exhibiting relatively low vegetation density. Commonly found as rills and gullies cut into residuum of the Las Vegas Formation (Qlv-summit and Qlv-erode).

Qa4: Young alluvium (late Holocene). Mostly inactive surfaces (affected by only the very largest precipitation or channel avulsion events) that occur up to 1 m above active washes. Composed of poorly to moderately sorted gravel, sand and minor silt that may grade into thin colluvium or alluvium washed from small rills upslope. Surface morphology consists of bars and swales often incised by active washes. Vegetation is dominated by creosote, blackbrush, and Mojave yucca. Typically, this unit varies from 0.5 to 1.5 m thick. Soil development is weak, characterized by Av-Bw or Bk-C horizons with either no soil carbonates, or very faint stage I carbonate morphology (Gile et al., 1966).

Qa3: Young alluvium (middle Holocene). Inactive surfaces that occur ~2 m above Qa4 with well developed planar surface morphology, and strong to moderately-developed desert pavement. Sediments contain poorly to moderately sorted gravel, sand and silt. Surface clasts are mostly Paleozoic limestone. Qa3 deposits grade downslope into Qlv-summit, both as a product of initial deposition as thin sheets onto the fringes of Qlv-summit, and also as a result of surface erosion. Qa3 is typically separated from Qa2 by a broad, 1 to 2 m scarp exposing sediments of the Las Vegas Formation (Qlv-erode). Isolated, discontinuous, and/or degraded surfaces intermediate to Qa3 and Qa2 do occur within the study area but were incorporated into this map unit due to their small spatial extent, their degraded character, and their overall similarity to Qa3. Soil development in Qa3 is characterized by Av-Bk-C horizons with stage I carbonate morphology (Gile et al., 1966).

Qa2: Young alluvium (early Holocene to latest Pleistocene?). Inactive surfaces that occur 1-2 m above Qa3 and are composed of poorly to moderately sorted gravels, sand and silt. Planar to faint bar and swale undulating surface morphology with 1 to 3 m² patches of well-developed desert pavement with sparse creosote, blackbrush, yucca, and other vegetation. This map unit grades upslope into Qau, and reflects deposits intermediate in age to Qa3 and Qa1. This unit also includes incised active channels too small or too discontinuous to map at this scale. Soil development is characterized by Av-Bk horizons with stage I to incipient stage II carbonate morphology (Gile et al., 1966).

Qa1: Old alluvium (latest to late Pleistocene). Relict, inactive alluvial silts, sands, and isolated gravels in actively eroding, narrow (2-5 m wide) ballena landforms that lie \sim 2 to 3+ m above Qa2/Qau surfaces. Alluvial deposits up to 0.5m thick overlie Las Vegas Formation strata, but often as only a thin (10-20 cm thick) gravel lag. Qa1 is the oldest geomorphic surface in the study area. Soil development is negligible due to extensive erosion, however paleosol horizons from the Las Vegas Formation may be exposed. Vegetation on this unit consists chiefly of blackbrush and less commonly creosote.

Qau: Undifferentiated alluvium (modern to late Pleistocene). Undifferentiated alluvium in the western portion of the field area. Primarily composed of inactive surfaces 1 to 2 m or more above Qa3, and grading downslope to Qa2. This unit is composed of poorly to moderately sorted gravels, sand and silt with variable bar and swale morphology. Younger, inset surfaces and active washes are also included within this undivided unit.

Qlv-erode: Sideslopes of exposed Las Vegas Formation (modern to latest Pleistocene).Wellstratified, partly indurated calcareous silts, mudstones and calcic paleosols of the earliest Holocene to latest Pleistocene Las Vegas Formation exposed in actively eroding sideslopes and channel cut banks. Locally derived colluvium is lumped within this map unit. Qlv-erode contains abundant calcified root traces and stage I to weak stage III calcic horizons, and amorphous silica cements. These deposits are extensively rilled and gullied, forming badlands topography. Qlverode grades downslope into Qa4 or the active washes of Qa5. Vegetation is extremely sparse to absent.

Qlv-summit: Planar erosional surface of Las Vegas Formation (middle Holocene).Planar (< 3°) erosional surface roughly equivalent to Qa3. Composed of exposed Las Vegas Formation (earliest Holocene to late Pleistocene) (Longwell et al., 1965; Haynes 1967; Quade & Pratt, 1989) silts, mudstones, and calcic paleosols covered by a moderate to well-developed desert pavement. Pavement clasts are composed of calcareous siltstone and rhizolith fragments derived from erosion of underlying Las Vegas Formation. Unit is bare to sparsely vegetated. In satellite and air-photo imagery, this unit is distinguished from others by its very pale to white color. Soil development can be highly variable because modern soil profiles overprint paleosols in the Las Vegas Formation. Soils are characterized by A, Av, or Avk horizons overlying Bk or Bky horizons grading into Bt, Btk, Bkq, Bkm, or Bkqm horizons.

Qx: Anthropogenically disturbed surfaces (modern). Well-established dirt roads and bulldozed vehicle pullouts along major power-lines. Individual 4x4 and/or utility vehicle tracks occur throughout the study area, especially in the Qlv-summit unit, but because of scale, these were not included in this mapping unit.

Table 2-1: Coyote Springs Map Units and Soil Profile Sites		
Map Unit	Soil profile sites within each unit	
Qa5	none	
Qa4	19, 20 & 28	
Qa3	6, 16, 22, 26 & 30	
Qa2	8 & 29	
Qal	none	
Qau	none	
Qlv-erode	14 & 15	
Qlv-summit	0-5, 7, 9-13, 21, 23-25 & 27	
Qx	none	
Water	none	

Water: Surface water in springs or ponds.

Figure 2-6: Approximate age relationships among Coyote Springs surficial geologic map units.

Photographs of the Coyote Springs Surficial Geologic Map Units

Figure 2-7: An eroding ballena of Qa1 sediments. This narrow ridge is only a few meters wide, but is 100s of meters long and sits 3-5 meters above surrounding map units. Gravels from an old alluvial surface have been let down during erosion and now drape over residual, planar-bedded silts and sands.

Figure 2-8: The Qa2 surface showing desert pavement (with the edge of a soil profile excavation in the foreground).

Figure 2-9: A view of theQa2 surface in the southern half of the study area, looking West. Most of the area vegetated in the background was mapped as unit Qau.

Figure 2-10: Characteristic desert pavement on the Qa3 surface. Clasts are relatively fine, and are chiefly composed of limestone.

Figure 2-11: The Contact between units Qa3 and Qlv-summit. The geologist is walking on Qa3 sediments (redder) and pointing towards the paler Qlv-summit surface. This contact is gradual over 3 to 5 meters and Qlv-summit is commonly 10 to 20 cm lower in elevation than Qa3.

Figure 2-12: A small, ~40cm gully cut bank in Qlv-summit, showing highly-indurated polygenetic soils and a pavement composed of calcium-carbonate rhizolith fragments. This is buckwheat habitat.

Figure 2-13: The Qlv-summit surface (foreground) and its morphostratigraphic position below Qa1 (ballena in background).

Figure 2-14: Relative elevation of Qa4 above Qa5 (A small, 20cm intermediate terrace in the foreground between them is lumped within Qa5). In the background, Qlv-erode is graded to Qa4.

Figure 2-15: Badlands comprised of the planar Qlv-summit surface, and steep, unstable side slopes of Qlv-erode.

Figure 2-16: Relationships between Qlv-summit, Qlv-erode, Qa4 (pale, sparsely vegetated alluvium in right-side of valley), & Qa5 (narrow, more vegetated wash in left center of image).

Figure 2-17: Distribution of buckwheat habitat classes within the Coyote Springs study area. Buckwheat may be locally absent or unevenly distributed across habitat areas in this particular study area.

B. Surficial Geology of the Gold Butte Study Area

Figure 2-18: Contrast-enhanced NAIP imagery (USDA-FSA, 2006) of the Gold Butte study area, superimposed over a LiDAR-derived slopeshade.

Figure 2-19: NRCS Soil Survey data for the Gold Butte study area, mapped at 1:24,000 (Soil Survey Staff, 2006; Soil Survey Staff, 2011). Five distinct soil associations are identified at Gold Butte. Data in this figure have been modified for display purposes and are shown beyond their intended scale – soil associations and complexes cannot reveal small areas of distinct soil types occurring within the area.

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

Figure 2-21: Surficial Geologic map of the Gold Butte study area (reduced from original 1:3,000 scale). The map unit key is shown on the next page.

Qa4 Alluvium of active channels (modern to late Holocene)
Qa3 Young alluvium (late Holocene)
Qa2 Young alluvium (middle Holocene)
Qa1 Old alluvium (late Pleistocene?)
Qc Colluvium (modern to late Pleistocene)
Qea Young, mixed eolian and alluvial deposits (late Holocene)
Qgyp Gypsum bedrock with minor eolian sand (middle to late Holocene?)
Qp Playa deposit (modern to latest Holocene)
Tgyp Gypsum-bearing sedimentary rock (Miocene)
Trock Limestone and sandstone (Miocene)
Ttuff Volcaniclastic sedimentary rock (Miocene)
Qx Anthropogenically disturbed surfaces (modern)

Figure 2-22: Key to the Gold Butte surficial geologic map (Figure 2-21).

Explanation of Gold Butte Surficial Geologic Map Units

Qa4: Alluvium of active channels (modern to late Holocene). Active wash deposits composed of poorly to moderately sorted gravel and sand forming fresh bar and channel morphology and exhibiting little to no vegetation. Commonly found as rills and gullies cut into residuum with or without thin (< 10 cm) accumulations of bed sediment.

Qa3: Young alluvium (late Holocene). Mostly inactive surfaces that occur up to 1 m above active washes. Commonly found as localized deposits within narrow inset valleys. Vegetation dominated by creosote and blackbrush. Surface is composed of poorly to moderately sorted gravel and sand that commonly grades into finer-grained thin colluvium upslope. Surface morphology composed of strong bar and swale topography often incised by active washes too small or discontinuous to map separately. Qa3 in the eastern portion of the map area contains well-developed patches of biological crusts. Soil development is weak, characterized by A or Av horizons overlying Bw, Bk or Bky horizons grading into C horizons. When present, carbonate morphology is very faint stage I (Gile et al., 1966). Stage I gypsum snowballs (e.g. Buck and Van Hosen, 2002) are present.

Qa2: Young alluvium (middle Holocene). Inactive surfaces that occur 2 to 3 m above active washes. Composed of moderately sorted gravel, sand, and silt. Surface morphology composed of muted bar and swale topography. Thickness of this unit is variable with the Horse Springs Formation occurring at shallow depths (< 25 cm) near eroded slopes of this unit. Weakly to moderately developed desert pavement occurs especially where this unit grades into Trock. Soil development is characterized by A or Av horizons overlying Bk or By horizons grading into BC or C horizons with very faint stage I carbonate morphology (Gile et al., 1966) and stage I gypsum snowballs (e.g. Buck and Van Hoesen, 2002).

Qa1: Old alluvium (late Pleistocene?). High-standing, inactive, fan remnant composed of poorly sorted gravel and sand deposited on steeply dipping gypsum-bearing sedimentary rocks of the upper Horse Springs Fm. This unit is approximately 10 meters above active washes, and exhibits well-developed desert pavement and planar surface morphology.

Qc: Colluvium (modern to late Pleistocene). Undivided unit comprised of sand and gravel of variable thickness, with localized eroded clasts from Trock, Tgyp, Ttuff or Qa1 on moderately steep to very steep slopes (>10-30°). Qc deposits mantle residual bedrock hills, channel cut banks, and steep sideslopes to Qa1.

Qea: Young, mixed eolian and alluvial deposits (late Holocene). Inactive surfaces primarily occurring in swales between resistant outcrops of gypsiferous bedrock. Composed of alluvial and eolian sand, silt, and gypsum residuum. Surface clasts are sparse to absent. Biological crusts containing pinnacles of Collema, Psora, and other cryptogams are abundant and give this surface a darker color where sand dominates; a lighter color where gypsum dominates. Biologic crusts are absent in minor active channels (10-30 cm wide, < 5 cm deep) that transport alluvium across this surface from Tgyp and Qgyp upslope. Qea grades gradually into Qgyp upslope, and is topographically similar in elevation and is considered age-equivalent to Qa3. Soil profiles are variable: surface horizons vary between Av and A; subsurface horizons may be Bw, By or rarely Bky overlying C or Cr. When present, pedogenic gypsum occurs as stage I snowballs (e.g. Buck and Van Hoesen, 2002).

Qgyp: Gypsum bedrock with minor eolian sand (middle to late Holocene?) Inactive summit and sideslope surfaces of Tgyp covered by thin (< 20 cm) deposits of fine eolian sand. Dark, pinnacled biological soil crusts dominate this surface and contrast greatly with white gypsum exposed as Tgyp. Soils commonly have Av-By-C/Cr horizons.

Qp: Playa deposit (modern to latest Holocene). Flat-lying deposit of even proportions of silt and fine sand with soluble minerals. When dry, the surface is characterized by polygonal desiccation cracks and surface efflorescence. Vegetation is sparse. Soils are characterized by A-By-Cr horizons.

Tgyp: Gypsum-bearing sedimentary rock (Miocene). Includes resistant, bedded gypsum or gypsum marl of the upper Horse Springs Formation (Thumb member) (Beard et al., 2007).

Trock: Limestone and sandstone (Miocene). Well-lithified, thinly bedded limestone and calcareous sandstone of the Horse Springs Fm (Thumb member) (Beard et al., 2007).

Ttuff: Volcaniclastic sedimentary rock (Miocene). Tuffaceous siltstone within the Thumb member of the Horse Springs Fm.

Qx: Anthropogenically disturbed surfaces (modern). Anthropogenically disturbed sediment and rock surfaces in established and maintained dirt roads. Individual 4x4 and utility vehicle tracks found within the study area are not mapped within this unit due to scale constraints.

Table 2-2: Gold Butte Map Units and Soil Profile Sites	
Map Unit	Soil profile sites within each unit
Qa4	N/A
Qa3	9, 10, 24, 31, 32, & 33
Qa2	16 & 25
Qa1	N/A
Qc	N/A
Qea	1, 2, 4, 6, 7, 8, 12, 14, 15, 29, & 30
Qgyp	0, 3, 11 18, 19, 22, 26, & 37
Qp	23
Тдур	5, 13, 17, 21, 34, & 36
Trock	N/A
Ttuff	N/A
Qx	N/A

Figure 2-23: Approximate age relationships among the Gold Butte surficial geologic map units.

Photographs of the Gold Butte Surficial Geologic Map Units

Figure 2-24: Relationship between Qa1, Qa3, and Tgyp. Elevation of the erosional surface of Tgyp in most of the field area is roughly correlative with the elevation of the Qa2 surface. Qa1 is typically 2 to 3 meters higher. The Qa1 surface is graded at a slightly shallower angle than Qa2, and originates from a higher elevation.

Figure 2-25: Cobbly desert pavement on the surface of Qa2.

Figure 2-26: Qa2 surface and fine, sandy sediments shown in a soil profile excavation.

Figure 2-27: Morphostratigraphic relationships between units Qa4, Qa3, and Qa2.

Figure 2-28: Qa3 alluvium and geomorphic surface above Qa4.

Figure 2-29: Tgyp, Qgyp, and Qea (from ~N to S). Qc hill slopes and the Qa2 surface are visible in the background.

Figure 2-30: View from opposite the ridge used as the vantage point in Figure 2-29. Photograph taken from SSW to NNE.

Figure 2-31: Relationships between units Tgyp, Qgyp, and Qea.

Figure 2-32: Soil profile excavation in unit Qea below a buckwheat plant.

Figure 2-33: Soil profile excavation in unit Qp. Desiccation polygons are faintly visible behind and to the right of the pit.

Figure 2-34: Outcrop of unit Ttuff.

Figure 2-35: Outcrops of pale Ttuff outcrops amid deposits of unit Qa3 (redder). Unit Qgyp, mantled with biological soil crusts, is visible as the darker material in the background.

Figure 2-36: An example of Trock. In this photo it occurs as thinly-bedded calcareous siltstone.

Figure 2-37: Distribution of buckwheat habitat classes within the Gold Butte study area.

C. Surficial Geology of the Bitter Spring Study Area

Figure 2-38: Contrast-enhanced NAIP imagery (USDA-FSA, 2006) of the Bitter Spring study area, superimposed over a LiDAR-derived slopeshade.

Figure 2-39: NRCS Soil Survey data for the Bitter Spring study area, mapped at 1:24,000 (Soil Survey Staff, 2006; Soil Survey Staff, 2011). Two soil associations and two complexes are identified. Data in this figure have been modified for display purposes and are shown beyond their intended scale – soil associations and complexes cannot reveal small areas of distinct soil types occurring within the area.

Figure 2-40: Solar insolation map of the greater Bitter Spring study area. Coordinates are in meters (NAD 83 UTM 11N).

Figure 2-41: Surficial geologic map of the Bitter Spring study area (reduced from original 1:3,000 scale). The map unit key is shown on the next page (Figure 2-42).

Qa4 Alluvium of active channels, rills and gullies (modern to late Holocene)	
Qa3 Young alluvium (late Holocene)	
Qa2 Young alluvium (middle to early Holocene)	
Qa1 Old alluvium (late Pleistocene)	
Qc Colluvium (modern to late Pleistocene)	
Qx Anthropogenically disturbed surfaces.	
Trock Limestone and sandstone (Miocene)	
Tss Fine-grained sedimentary rock (Miocene)	

Figure 2-42: Key to the Bitter Spring surficial geologic map (Figure 2-41)

Explanation of the Bitter Spring Surficial Geologic Map Units

Qa4: Alluvium of active channels, rills and gullies (modern to late Holocene). Active wash deposits composed of poorly to moderately sorted sand with some gravel, forming fresh bar and channel morphology and exhibiting little to no vegetation. Commonly found as rills and gullies cut into residuum with or without thin (< 10 cm) accumulations of bed sediment.

Qa3: Young alluvium (late Holocene). Mostly inactive surfaces that occur up to 1 m above active washes. Composed of poorly to moderately sorted sand, silt and gravel that may grade into thin colluvium or alluvium washed from small rills upslope. Surface morphology composed of bars and swales. Vegetation dominated by creosote and blackbrush; occasionally vegetated by the Las Vegas buckwheat. Soil development is weak, characterized by A-By-C/Cr or A-C/Cr horizons, with the sum of A and B horizons commonly totaling < 50 cm in thickness.

Qa2: Young alluvium (middle to early Holocene). Inactive surfaces composed of gravelly or cobbly sand that occur approximately 2 m above Qa3. Characterized by well-developed planar surface morphology, and strongly to moderately developed desert pavement. Surface clasts are composed primarily of Paleozoic sedimentary rocks, chiefly limestone. Depth to weathered Tss or Trock is on the order of 50 cm, but may be locally shallow (< 25 cm). Soil development is characterized by an A or Av horizon overlying By or Bk horizons (depending on local parent material mineralogy) containing stage I gypsum snowballs (e.g. Buck and Van Hoesen, 2002) and/or stage I carbonate filaments (e.g. Gile et al., 1966; Bachman & Machette, 1977).

Qa1: Old alluvium (late Pleistocene). Inactive fan remnants composed of alluvial gravel and sand. Planar surface with moderate to well-developed desert pavement in large (up to $\sim 9 \text{ m}^2$) interspaces between creosote, blackbrush, and other vegetation. Qa1 surfaces are 15 to 20 m above active washes. Alluvium is several meters thick and overlies Tss and Trock. Soil development is characterized by Av horizons overlying Bk-Bkm horizons exhibiting strong stage III carbonate morphology (Gile et al., 1966; Bachman & Machette, 1977). Petrocalcic fragments are common where surface soil is eroded.

Qc: Colluvium (modern to late Pleistocene). Undivided unit comprised of coarse, cobbly to gravelly colluvium and sandy alluvium on steep sideslopes (> $10-15^{\circ}$). Thickness can vary from a layer one cobble thick, up to several decimeters at the base of slopes. This unit is most commonly found on sideslopes of Qa1, Qa2, or Trock.

Qx: Anthropogenically disturbed surfaces. Mine spoil, slag (1920's) and bulldozed tranches (1920's to 1980's?). Individual 4x4 and/or utility vehicle tracks occur throughout the study area, but are not included in this mapping unit.

Trock: Limestone and sandstone (Miocene). Well-lithified, thinly bedded limestone and calcareous sandstone of the Horse Springs Fm (Thumb member) (Beard et al., 2007). Strata in map area generally dip to the west at ~ 45°. Discontinuous or thin (< 1m thick) exposures commonly occur within Tss and Qa4 units and are not mapped within this unit.

Tss: Fine-grained sedimentary rock (Miocene). Poorly-lithified siltstone, claystone, and gypsum marl of the Red Sandstone Unit and/or upper Horse Springs Fm. (Thumb member) (Beard et al., 2007). Primarily occurs as badlands, with exposures in steep, unstable sideslopes. May be thinly mantled with gravel derived from Qa2, Qa1, or Qc.

Table 2-3: Bitter Spring Map Units and Soil Profile Sites		
Map Unit	Soil profile sites within each unit	
Qa4	N/A	
Qa3	6, 11	
Qa2	5, 7, 10, 15, 17, 18, 22, 24, & 25	
Qal	4 & 21	
Qc	2	
Qx	N/A	
Trock	N/A	
Tss	0, 1, 3, 8, 9, 12, 14, 16, 19, 23, 26, 27, 28, & 29	

Figure 2-43: Approximate age relationships among the Bitter Spring surficial geologic map units.

Photographs of the Bitter Spring Surficial Geologic Map Units

Figure 2-44: Qa1 surface with cobble-sized fragments of pale, reddish, degraded, stage III calcic soil visible in lower left.

Figure 2-45: Gully cut bank revealing a characteristic soil profile (w/ some case hardening) in Qa1 sediments.

Figure 2-46: Gully cut bank revealing the gravelly calcic soil profile of unit Qa1.

Figure 2-47: Examples of units Tss, Qa1, Qa2, and Qc. Sparse mantles of colluvium or residual pebbles from Qa2 are almost ubiquitous on Tss.

Figure 2-48: Sedimentary strata of Tss exposed beneath a thin colluvial mantle from eroding Qa2 sediments.

Figure 2-49: Relative surface elevations of alluvial units Qa4, Qa3, and Qa2.

Figure 2-50: Overview of the Bitter Spring study area. Outcrop of Trock in left foreground; relative surface elevations of Qa1 and Qa2 visible in right background. Tss is also visible as paler, sparsely vegetated to bare patches on side slopes.

Figure 2-51: View to the north from atop a narrow ridge of Qa1 in the south central part of the Bitter Spring study area.

Figure 2-52: Distribution of buckwheat habitat classes within the Bitter Spring study area.

D. Additional Data and Statistical Results for All Study Areas

The total area of each habitat class was calculated in ArcGIS, and is summarized by study area in Table 2-4a (hectares) and 2-4b (percent of study area) for all sites.

Table 2-4a: Habitat Clas	s Areas (hectar	es)	
Habitat Class	Gold Butte	Coyote Springs	Bitter Spring
Habitat	1.21	49.10	32.21
Potential Habitat	32.27	90.59	18.81
Non-Habitat	191.78	260.63	174.15
Total area (hectares)	225	400	225
Table 2-4b: Habitat Class	s Areas (% of t	otal area)	
Habitat	0.5	12.3	14.3
Potential Habitat	14.3	22.6	8.4
Non-Habitat	85.1	65.1	77.3

Chi square tests of aspect classes and surficial geologic map units did not return significant results, except when comparing Coyote Springs map unit Qlv-summit against the presence/absence of buckwheat (Table 2-5).

Table 2-5: Summary	of Chi-Square Test for C	oyote Sprii	ngs Unit Q	lv-summit
		No BW	BW	Total
Other Map Units	Count	14	1	15
(not Qlv Summit)	% within Qlv-summit	93.3%	6.7%	100.0%
	% within all	66.7%	9.1%	46.9%
	% of Total	43.8%	3.1%	46.9%
Qlv Summit	Count	7	10	17
	% within Qlv-summit	41.2%	58.8%	100.0%
	% within all	33.3%	90.9%	53.1%
	% of Total	21.9%	31.3%	53.1%
Total	Count	21	11	32
	% within Qlv-summit	65.6%	34.4%	100.0%
	% within all	100.0%	100.0%	100.0%
	% of Total	65.6%	34.4%	100.0%

Chi-square with Yates Continuity Correction Asymp. Signif. = 0.006

IV. Discussion & Interpretation

All three study areas are similarly comprised of a range of geomorphic surfaces spanning the late Pleistocene through the Holocene as well as outcrops of late Pleistocene and Miocene bedrock. Ages of the surficial map units were estimated by comparing their soil development and surficial characteristics to similar surfaces in the region. This includes alluvial fans north and west of Las Vegas (Sowers et al., 1988; Bell et al., 1998, 1999; Page et al., 2005), south of Las Vegas in the Ivanpah Valley (House et al. 2006; 2010), near the Nevada Test Site between Beatty and north Las Vegas (Taylor, 1986; Harden et al., 1991; Peterson et al., 1995), and in the central Mojave Desert near Silver Lake and the Providence Mountains (Wells et al, 1987; McFadden, 1988; Reheis et al., 1989; Harden et al., 1991; McDonald et al., 2003). Additionally, in the Coyote Springs study area, ages of surficial units were estimated by extrapolating the ages of the Las Vegas Formation in the northern Las Vegas Valley to the same unit in the study area (Longwell et al., 1965; Haynes, 1967; Quade et al., 1986; Quade and Pratt, 1989; Springer et al., 2008). In the Gold Butte and Bitter Spring study areas, formation names and ages of bedrock units were based off of map unit descriptions by Beard et al. (2007).

Alluvial deposits

Modern washes in the three study areas are still experiencing active stream deposition and erosion. These surfaces are labeled Qa5 in Coyote Springs, and Qa4 in Bitter Springs and Gold Butte. All three study areas also contain young geomorphic surfaces that are ~ 1 m or less above these modern, active channels. These higher surfaces are labeled Qa4 for Coyote Springs, and Qa3 for Bitter Springs and Gold Butte. These surfaces exhibit bar and swale surface morphology and very little soil development. Therefore Qa4 (Coyote Springs) and Qa3 (Bitter Springs and Gold Butte) are likely younger than the Qay2 surface of House et al. (2006, 2010). These surfaces also correspond well with other late Holocene surfaces in the region (see House et al., 2010; Fig. 40 for regional comparisons).

The next older surfaces are Qa3 in Coyote Springs and Qa2 in Bitter Springs and Gold Butte. Qa3 at Coyote Springs and Qa2 in Gold Butte have weak to moderate desert pavement and weak soil development. These surfaces are comparable to Qay2 in the Ivanpah Valley, south of Las Vegas (House et al., 2006; House et al., 2010) and are probably middle Holocene in age. The Qa2 surface at Bitter Springs may be slightly older and may extend into the latest part of the early Holocene based on its increased soil and desert pavement development. However, it is important to note that many factors affect the rate at which carbonate accumulates in arid soils including: (1) the amount of effective precipitation, (2) the amount of Ca²⁺ion input through rain and dust, (3) the length of time the surface is stable so that soil formation can take place (little/no erosion/sedimentation), (4) presence of carbonate minerals in the parent material, (5) soil texture, (6) presence and density of vegetation (Rech et al., 2003; Amit et al., 2006; Breecker et al., 2010), and (7) potential for microbial precipitation of carbonate (e.g. Monger et al., 1991; Lian et al., 2006). This shows that care must be taken when deciding how much weight to give the use of soil carbonate morphology in estimating the age of a geomorphic surface. Therefore, increased soil development at Gold Butte for the Qa2 surface may not be a reflection of increased age and our extension of the age of this unit into the early Holocene should be considered tentative.

Unit Qa2 at Coyote Springs is interpreted to be early Holocene in age because of its welldeveloped desert pavement and soil development that is similar to Qay1 in the Ivanpah Valley, NV (House et al., 2006; 2010). Portions of this unit may extend into the latest Pleistocene, as interpreted for Qay1 in the Ivanpah Valley. In contrast to Ivanpah Valley, alluvial deposits of the Qa2 surface in the Coyote Springs study area lie on top of undated deposits of the Las Vegas Formation. The Las Vegas Formation is thought to have been deposited in a wetland environment during the latest Pleistocene (Longwell et al., 1965; Havnes, 1967; Quade et al., 1986; Quade and Pratt, 1989, Springer et al., 2007). Deposition slowed and then ceased as the climate became increasingly more arid at the end of the Pleistocene/beginning of the Holocene. In the northern Las Vegas Valley, the Las Vegas Formation has been dated to the latest Pleistocene and in some areas as young as early Holocene (Haynes, 1967; Springer et al., 2007). In the Coyote Springs study area, it is conceivable that during this climatic transition, spring activity and deposition of the Las Vegas Formation likely transitioned towards lower elevations in the Coyote Springs area before ceasing entirely. Because incision and alluvial deposition could have been occurring upslope simultaneously as deposition of the Las Vegas Formation occurred downslope, the age of the Qa2 surface may extend into the latest Pleistocene.

The Qa1 surface at Coyote Springs is topographically higher (2-3 m) and older than the surface of Qa2. Erosion of the underlying fine-grained Las Vegas Formation has resulted in the formation of small ballenas in which much of the overlying Qa1 alluvium has been removed, leaving only a thin gravel lag. Because of this, it is difficult to determine an age for this surface. However, we interpret it as most likely latest, and possibly late Pleistocene in age. This is based on the high topographic position of Qa1 and the fact that it overlies Las Vegas Formation deposits occurring along the uppermost portion of the distal fan. These deposits are mostly likely correlative to the last pluvial maximum in which the wetland environment should have been at its most extensive. Radiometric dating and further study of these sediments in this basin could provide more precise age estimates.

Unit Qa1 at Bitter Springs contains a well-developed soil with stage III carbonate morphology and lies 15-20 m above the modern washes. This great degree of incision at this site is likely attributable to the easily erodible, poorly lithified marls and siltstones of the underlying Horse Springs Formation (Beard et al., 2007). This unit corresponds to the youngest subunit of the Qai map unit in the Ivanpah Valley (House et al., 2006, 2010) and is interpreted to be late Pleistocene in age. Similarly, the Qa1 surface at Gold Butte is also considered to be late Pleistocene in age, although data on its soil development is not available.

Colluvial deposits

Colluvial map units (Qc) are present in all three study areas. These deposits most commonly occur along steep sideslopes or cutbanks, and/or mantle bedrock hills. Because these

surfaces remain active today, their ages extend from the time of the initial incision forming the cutbanks and sideslopes until today.

Eolian deposits

Minor eolian (< 14 cm) deposits occur on nearly all alluvial surfaces and form Av horizons underneath desert pavements. However, unit Qea at Gold Butte is composed of a mix of eolian and alluvial sediment accumulating in swales between more resistant gypsiferous bedrock. This unit is dominated by biological soil crusts which actively trap eolian dust (Williams et al., 2010) and because of its special surficial characteristics it was mapped as a separate unit. Because it is topographically similar in elevation to Qa3, it is considered late Holocene in age.

Playa deposits

One, very small ($\sim 300 \text{ m}^2$) playa deposit (Qp) was recognized at Gold Butte and mapped separately because of its unique surface characteristics that indicate intermittent surface water ponding. This unit represents very recent to modern periods in which surface water may be present for very short intervals. This unit also occupies an area thought during initial mapping to be potential habitat for *E. corymbosum*.

Bedrock units

Many bedrock units are exposed at the surface in the three mapping areas. At Gold Butte, these include gypsum-rich sedimentary rock (Tgyp), well-lithified thinly bedded limestone and calcareous sandstone (Trock) and tuffaceous siltstone (Ttuff) of the Miocene Horse Springs Formation (Beard et al., 2007). Similar Trock deposits also occur at Bitter Springs, as do poorly-lithified exposures of gypsum marl, siltstone and claystone (Tss) of the Red Sandstone and/or upper Horse Springs Formation (Thumb member) (Beard et al., 2007).

Erosional units

In the Coyote Springs study area, the Las Vegas Formation is exposed as either actively eroding sideslopes (Qlv-erode) or as spatially extensive (1.5 to 17.5 hectare) planar erosional surfaces (Qlv-summit) bearing an erosional lag of calcareous siltstone or rhizolith fragments. Both of these map units are erosional geomorphic surfaces and therefore the age of the geomorphic surfaces are younger than the bedrock being eroded (Figure 2-5). As described previously, the Las Vegas Formation is composed of interbedded siltstone, mudstone, and calcareous paleosols that were deposited in wetland environments during the latest Pleistocene (Longwell et al., 1965; Haynes, 1967; Quade et al., 1986; Quade & Pratt, 1989; Springer et al., 2007). Deposition of the Las Vegas Formation is predicted to be tightly connected to water-table levels such that increased aridity at the end of the last glacial period would shift deposition eastward as the wetland shrunk in size. Therefore, the western-most, and topographically highest, Qlv-erode geomorphic surfaces in the study area are thought to have been first exposed in the latest Pleistocene when downcutting caused deposition on the Qa1 surfaces to cease and exposed

Las Vegas Formation deposits along channel cut banks. Continued incision during the Holocene further eroded and exposed Las Vegas Formation deposits along younger cut banks adjacent to Qa2 and Qa3 geomorphic surfaces. These exposed cut banks evolved into the sideslopes seen today. The Qlv-summit surface is a planar, erosional surface exposing Las Vegas Formation deposits. This erosional surface is believed to be age-equivalent to Qa3 (middle Holocene) because of their similar topographic position.

Comparison of Map Units to NRCS Soil Survey

Allowing for the large discrepancy in map scale, there is relatively good agreement between placement of the NRCS soil associations and the new surficial geologic map units from this study (Figure pairs 2-2 & 2-4, 2-19 & 2-21, and 2-39 & 2-41). However, because the existing NRCS soil survey data is mapped at an order 3 level, individual map units contain several different types of soils grouped together as an 'association' (see Robins et al., 2009 for additional discussion on this topic). This also coarsens the differences in conceptual precision beyond difference in mapping scale between the 1:24,000 NRCS data and the 1:3,000 surficial geologic data. Use of associations also results in greater error when using the NRCS maps to estimate buckwheat habitats. In some cases, these inaccuracies can be quite large, in others, they are less so. Specific details for each study are discussed below.

At Coyote Springs, units Qlv-summit and Qlv-erode are understandably incorporated into one Soil Survey unit, Badlands (Figures 2-2 & 2-4), which consists of incised fan remnants (Soil Survey Staff, 2011). This unit unavoidably contains inclusions of Qa4 due to the 1:24,000 mapping scale. Alluvial units Qa1 through Qa 5 and Qau are encompassed by the Elbowcanyon-Wechech association, which also overlaps areas of Qlv-summit and Qlv-erode. As described by the NRCS, these soils chiefly occur on shallow sloping (1° to 5°) fan aprons composed of alluvium derived from limestone and/or dolomite (Soil Survey Staff, 2011), which is consistent with map unit interpretations in this study. The final NRCS map unit in the Coyote Springs study area is the Glendale Loam, and was the least well-matched in terms of placement. The Glendale Loam encompasses units Qa4 and Qa5, along with areas of Qlv-erode. Use of 1:24,000 soil survey data in lieu of the 1:3,000 surficial geologic map would have led to inaccurate estimates of buckwheat habitat classes at the Coyote Springs study area, overestimating "Non-habitat" in the Elbowcanyon-Wechech association polygons, and overestimating "Habitat" in the Badlands polygon. It would not have been possible to define "Potential Habitat" areas using the soil survey.

Qualitatively, Gold Butte exhibited the best overall agreement between NRCS polygons and surficial geologic map units (Figures 2-19 & 2-21). Contacts between NRCS units reflect the transitions between landforms dominated by colluvial backslopes, outcrops of gypsum-rich bedrock, and the various assemblages of alluvial sediments. The Crosgrain-Irongold-Nickel association consists largely of alluvium derived from mixed or metamorphic parent materials, preserved as fan remnants or on backslopes (Soil Survey Staff, 2011). This association chiefly encompasses map units Qc, Trock, Qa1, and Qa2, with minor inclusions of Tgyp and Qgyp. The

Bracken-Arizo-Badland association consists of soils formed in colluvium and/or gypsum bedrock residuum (Soil Survey Staff, 2011). This association is roughly equivalent to units Tgyp and Qgyp, with inclusions of other units (most noteably Qea) not identified due to scale. The Bluepoint-Grapevine association of sandy fan deposits influenced by gypsiferous but mixed alluvium was found to broadly correlate with map units Qa3 and Qa4, with significant inclusions of Qa2. In the Gold Butte study area, the Bracken-Arizo-Badland association might be used to generally predict candidate areas for buckwheat habitat or "Potential Habitat". However, the 1:24,000 scale means that small areas of Tgyp, Qgyp, and Qea are unavoidably missed, which is especially problematic given the relatively small size (mean = 693 m²) of Qea "Habitat" landforms in particular.

Soil Survey associations and surficial geologic map units were least similar at Bitter Spring (Figures 2-39 & 2-41). The Weiser-Arizo association of alluvial soils correlate well with map units Qa4 and Qa3, but only overlap in the northeastern corner of the study area. Similarly, The Helkitchen-St. Thomas complex on steep side slopes correlates with unit Qc, but only occurs in a small portion of the field area. The Wechech-Upperline association consists of soils developed in fan remnant summits and commonly having a petrocalcic horizon (Soil Survey Staff, 2011). At Bitter Spring, this polygon incorporates two ridges of Qa1, but excludes other instances of Qa1 elsewhere in the field area. More importantly for this study, the association obscures critical areas of buckwheat habitat in valley-bottom and badland sideslope exposures of Tss in the southern edge of the study area. Last, the St. Thomas-Upperline-Whitebasin complex covers the greatest proportion of the study area, but encompasses every surficial geologic map unit, and every single habitat class. Consequently, ecological studies attempting to employ Soil Survey data for prediction of buckwheat habitat areas should independently assess or map areas described as belonging to either the St. Thomas-Upperline-Whitebasin complex or the Wechech-Upperline association.

Map Units as Habitat

At Coyote Springs, Las Vegas buckwheat was found almost exclusively within Qlvsummit (Figure 2-17), and therefore this map unit is designated as "Habitat." However, within the Qlv-summit unit, many areas 100 m or greater in diameter were found to be completely barren of vegetation, including buckwheat. These areas are especially common along the eastern edge of the study area. In addition to Qlv-summit, two small buckwheat individuals were also found within areas mapped as Qlv-erode. We therefore consider Qlv-erode to be "Potential Habitat" when adjacent to Qlv-summit, but recognize that portions of this map unit are likely too steep and too unstable to support any vegetation at all. Except for the margin of Qa3 immediately adjacent to Qlv-summit, none of the alluvial units (Qa1, Qa2, Qa3, Qa4, Qa5, and Qau) at Coyote Springs were found to support the plant. These units are therefore considered "Non-Habitat".

At Gold Butte (Figure 2-37), buckwheat were found most commonly within unit Qea, however, the fringes of unit Qgyp within ~ 1 m elevation of Qea were found to support several

Final Report (CH2)

of the plants. Additionally, one large individual was found growing on an eroding sideslope of Qa2 immediately adjacent to Qea, and, again, within approximately 1 vertical meter of the Qea surface. Both Qea and Qgyp, are considered potential buckwheat habitat.

At Bitter Spring, map units Tss and Qa3 were found to support thriving Las Vegas buckwheat populations, and are mapped as "Habitat" wherever field observations confirmed the presence of the species (Figure 2-52). Although Qa3 is an alluvial unit, its thickness is highly variable, and it is possible that the depth to buried Tss strata is shallow where buckwheat are growing in Qa3. Thus, instances of both Tss and Qa3 in which buckwheat do not occur are classified as "Potential Habitat". Map units Qa1, Qa2, Qa4, Trock, and Qc were not found to support any buckwheat and are considered "Non-habitat".

Of the three sites, Gold Butte contained the lowest total area of "Habitat", at ~1.1 ha, or just under 0.5% of the total study area. This restricted distribution reflects the occurrence of Qea only within swales between outcrops of Tgyp. Habitat at Coyote Springs and Bitter Spring was more widely distributed, with ~50 ha at Coyote Springs (~12% of the study area) and ~32 ha at Bitter Spring (~14% of the study area).

Statistics and Other Data

Apart from Qlv-summit at Coyote Springs, no other map units and no studied aspect classes, at any study area, returned significant associations using the Chi-square test for independence (with Yates Continuity Correction). A significant relationship between Qlv summit and buckwheat habitat (p=.006) was indicated at Coyote Springs. Within this study area, 90.9% of all "Habitat" sites sit within unit Qlv-summit. This result confirms the significance of the distribution as noted above. Results at the other study areas may reflect small sample sizes, as well as the occurrence of buckwheat in two map units at Bitter Spring, and three at Gold Butte (Qea, Qgyp, and one Qa2).

Lack of significant results among the aspect classes may indicate that some edaphic factor (e.g., surface characteristics, soil texture, etc.) outweighs the importance of slope aspect in determining habitat suitability.

V. Conclusions

Fine-scale (1:3,000) surficial geologic maps were created for areas containing Las Vegas Buckwheat in Coyote Springs, Gold Butte, and Bitter Spring, in southern Nevada, USA. Using field and remote sensing data, geomorphic surfaces and landforms were differentiated based on morphostratigraphic relationships, surface characteristics (including physical and biological crusts), sediment texture and lithology, soil profile characteristics, and vegetation. All three study areas are composed of complex assemblages of Holocene to late Pleistocene geomorphic surfaces and outcrops of late Pleistocene and Miocene bedrock. Of these, buckwheat was predominantly found along different types of map units in each of the three study areas.

In Coyote Springs, buckwheat is almost always found growing in the flat-lying deposits of the late Pleistocene Las Vegas Formation that were mostly likely exposed due to erosion

during the middle Holocene (Qlv-summit). In contrast, in Gold Butte, buckwheat is found primarily along very young, thin, eolian and alluvial sediments deposited in swales between resistant outcrops of gypsiferous bedrock (Qea). Minor occurrences however were found in adjacent map units Qgyp and Qa2. At Bitter Spring, buckwheat is associated with poorlylithified siltstone, claystone and gypsum marl of the upper Horse Springs Formation (Thumb member) (Tss) and mostly inactive geomorphic surfaces composed of very young alluvium near active arroyos (Qa3). Chi-square tests for independence (with Yates Continuity Correction) found a significant association for buckwheat on only the planar, late Pleistocene Las Vegas Formation map unit (Qlv-summit) at Coyote Springs. The lack of significant results at the other study sites may be a result of the small sample sizes or the occurrence of buckwheat in more than one map unit in each area. Additionally, the lack of significant results among the aspect classes may indicate that an edaphic factor such as soil texture, surface characteristics, etc. outweigh the importance of slope in determining habitat suitability for Las Vegas Buckwheat.

VI. Recommendations

Models developed to predict Las Vegas buckwheat habitats should address the increased likelihood of Las Vegas buckwheat occurrences in the following types of environments:

- (1) Surfaces with few rock clasts buckwheat is extremely unlikely to be found in areas of thick gravelly alluvium and/or strongly developed desert pavement.
- (2) Exposures of the Las Vegas Formation (not covered by thick gravels)
- (3) Calcareous and/or gypsiferous outcrops of the Horse Springs Formation (not covered by thick gravels)
- (4) Shallow sandy alluvium overlying gypsum bedrock in either very young, inactive geomorphic surfaces adjacent to modern sandy arroyos, or within rills or small gullies.

Individual deposits, soils, and landforms which the Las Vegas buckwheat may be quite small, thus, use of large-scale or high-resolution map or satellite data are recommended for any attempt at habitat modelling. This study, demonstrates that a scale of 1:3,000 is sufficient to model habitat distributions, and, while there is no direct translation between map scale and raster resolution, we note that 1.5 to 2 meter resolution topographic or satellite data are also ideal. This scale of mapping or resolution of landscape imagery will permit identification of habitat substrates only moderately larger than many of the individual buckwheat plants themselves.

Additional analysis of microclimate and/or very-high resolution (~0.1 to 0.5 m) solar insolation studies are also recommended, because of their potential to identify important soil-water relationships that were not resolved at the 1:3,000 surficial geologic map scale and 5 m resolution solar insolation analysis used in this study.

References

- Amit, R., Enzel, Y., and Sharon, D., 2006. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems: Geology 34 (6): 509–512.
- Beard, L.S., Anderson, R.E., Block, D.L., Bohannon, R.G., Brady, R.J., Castor, S.B.,
 Duebendorfer, E.M., Faulds, J.E., Felger, T.J., Howard, K.A., Kuntz, M.A., and
 Williams, V.S., 2007. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle,
 Clark County, Nevada, and Mohave County, Arizona. USGS OFR 2007-1010.
- Bell, J.W., Ramelli, A.R., and Caskey, S.J., 1998. Geologic map of the Tule Springs Park quadrangle, Nevada: Nevada Bureau of Mines and Geology Map 113, 1:24,000.
- Bell, J.W., Ramelli, A.R., dePolo, C.M., Maldonado, F., and Schmidt, D.L., 1999. Geologic map of the Corn Creek Springs quadrangle, Nevada: Nevada Bureau of Mines and Geology Map 121, 1:24,000.
- Breecker, D.O., Sharp, Z.D., and McFadden, L.D., 2010. Atmospheric CO₂ concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proceedings of the National Academy of Sciences 107(2): 576-580.
- Buck, B.J., and Van Hoesen, J.G., 2002. Snowball morphology and SEM analysis of pedogenic gypsum, southern New Mexico, Journal of Arid Environments 51: 469-487.
- Compton, R.R., 1985. Geology in the Field. New York: John Wiley and Sons. 416 pages.
- Gile, L.H., Peterson, F.F., and Grossman, R.B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science101 (5): 347–360.
- Harden, J.W., Taylor, E.M., Hill, C., Mark, R.L., McFadden, L.D., Reheis, M.C., Sowers, J.M., and Wells, S.G., 1991. Rates of soil development from four soil chronosequences in the southern Great Basin: Quaternary Research35: 383–399.
- Haynes, C.V., 1967. Quaternary geology of the Tule Springs area, Clark County, Nevada. IN: Wormington, H.M. and Ellis, D., Eds. Pleistocene studies in southern Nevada. Nevada State Museum Anthropological Papers No. 13. Carson City, Nevada State Museum, pp 15-104.
- House, P.K., Ramelli, A.R., and Buck, B.J., 2006. Surficial geologic map of the Ivanpah Valley area, Clark County, Nevada: Nevada Bureau of Mines and Geology Open-File Report 06-8, 1:50,000.
- House, P.K., Buck, B.J., and Ramelli, A.R., 2010. Geologic assessment of piedmont and playa flood hazards in the Ivanpah Valley area, Clark County, Nevada (online only). Nevada Bureau of Mines and Geology Report 53: <u>http://www.nbmg.unr.edu/Pubs/r/r53/</u>
- Lian, B., Hu, Q., Chen, J., Hi, J. and Teng, H., 2006. Carbonate biomineralization induced by soil bacterium *Bacillus megaterium*: Geochimica et Cosmochimica Acta70: 5522–5535.
- Longwell, C.R., Pampeyan, E.H., Bowyer, B., and Roberts, R.J., 1965. Geology and mineral deposits of Clark County, Nevada. Nevada Bureau of Mines and Geology Bulletin 62. (Electronic edition 2008).

- McDonald, E.V., McFadden, L.D., and Wells, S.G., 2003. Regional response of alluvial fans to the Pleistocene-Holocene climatic transition, Mohave Desert, California: in Y. Enzel, S.G. Wells, and N. Lancaster, eds., Paleoenvironments and paleohydrology of the Mohave and southern Great Basin Deserts. Boulder, CO: Geological Society of America Special Paper 368: 189–205.
- McFadden, L.D., 1988. Climatic influences on rates and processes of soil development in Quaternary deposits of southern California: Geological Society of America Special Paper 216: 153–177.
- Monger, C.H., Daugherty, L.A., Lindemann, W.C., and Liddell, C.M., 1991. Microbial precipitation of pedogenic calcite: Geology19: 997–1000.
- Page, W.R., Lundstrom, S.C., Harris, A.G., Langenheim, V.E., Workman, J.B., Mahan, S.A., Paces, J.B., Dixon, G.L., Rowley, P.D., Burchfiel, B.C., Bell, J.W., and Smith, E.I., 2005. Geologic and Geophysical Maps of the Las Vegas 30' x 60' Quadrangle, Clark and Nye Counties, Nevada, and Inyo County, California: United States Geological Survey Scientific Investigations Map 2814, 1:100,000.
- Peterson, F.F., 1981. Landforms of the Basin and Range province defined for soil survey. University of Nevada, Nevada Agricultural Experiment Station Technical Bulletin 28, Reno, Nevada, 52 p.
- Peterson, F.F., Bell, J.W., Dorn, R.I., Ramelli, A.R., and Ku, T., 1995. Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada: Geological Society of America Bulletin107: 379–395.
- Reveal, J.L., 2004. New entities in Eriogonum (Polygonaceae: Eriogonoideae). Phytologia 86: 121–159.
- Quade, J., 1986. Late Quaternary Environmental Changes in the Upper Las Vegas Valley, Nevada. Quaternary Research 26:340-357.
- Quade, J. and Pratt, W., 1989. Late Wisconsin groundwater discharge environments of the southwestern Indian Springs Valley, southern Nevada. Quaternary Research 31:351-370.
- Rech, J.A., Quade, J., and Hart, W.S., 2003. Isotopic evidence for the origin of Ca and S in soil gypsum, anhydrite, and calcite in the Atacama Desert, Chile: Geochimica et Cosmochimica Acta 67: 575–586. doi: 10.1016/S0016-7037(02)01175-4.
- Reheis, M.C., Sowers, J.M., Taylor, E.M., McFadden, L.D., and Harden, J.W., 1992, Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.: Geoderma 52, p. 303–342.
- Robins, C.R., Buck, B.J., Williams, A.J., Morton, J.L., House, P.K., Howell, M.S., Yonovitz, M.L., 2009. Comparison of flood hazard assessments on desert piedmonts and playas: A case study in Ivanpah Valley, Nevada, Geomorphology 103(4): 520-532. doi:10.1016/j.geomorph.2008.07.020
- Ruhe, R.V., 1969. Quaternary Landscapes in Iowa. Ames: Iowa State University Press. 255 pages.
- Soil Survey Staff, 2011. Soil Map–Clark County Area, Nevada; and Energy and Defense Area, Nevada, Parts of Clark, Lincoln and Nye Counties. Natural Resources Conservation

Service, United States Department of Agriculture. Web Soil Survey. Available online at <u>http://websoilsurvey.nrcs.usda.gov</u> [Accessed July 1, 2011].

- Soil Survey Staff, 2006. Soil Survey of Clark County Area, Nevada. Natural Resources Conservation Service, United States Department of Agriculture.1802 pages. Available online at: <u>http://soils.usda.gov/survey/online_surveys/nevada/</u>
- Sowers, J.M., Harden, J.W., Robinson, S.W., McFadden, L.D., Amundson, R.G., Jull, A.J.T., Reheis, M.C., Taylor, E.M., Szabo, B.J., Chadwick, O.A., and Ku, T.L., 1988, Geomorphology and pedology on the Kyle Canyon alluvial fan, southern Nevada., *in* Weide, D.L. and Faber, M.L., eds., This extended land, Geological journeys in the southern Basin and Range, Geological Society of America Cordilleran Section, Field Trip Guidebook, pp. 137–157.
- Springer, K.B., Sagebiel, J.C., Manker, C., and Scott, E., 2008. Paleontologic exploration and geologic mapping of the Rancholabrean age Las Vegas Formation, Las Vegas, Nevada. Abstracts with programs Geological Society of America 40 (1): p 50.
- Taylor, E.M., 1986. Impact of time and climate on Quaternary soils in the Yucca Mountain area of the Nevada Test Site [M.S. thesis]:University of Colorado, Boulder, CO., 217 p.
- USDA-FSA Aerial Photography Field Office (APFO), 2006. National Agricultural Imagery Program data.
- Wells, S.G., Dohrenwend, J.C., McFadden, L.D., Turin, B.D., and Mahrer, K.D., 1985, Late Cenozoic landscape evolution on lava flow sur- faces of the Cima volcanic field, Mojave Desert, California: Geological Society of America Bulletin96: 1518–1529.
- Williams, A., Buck, B. J., Soukup, D., and Merkler, D., 2010. Integrated model of biological soil crust distribution, Mojave Desert (USA), 19th World Congress of Soil Science, Soil Solutions for a Changing World 1 – 6 August 2010, Brisbane, Australia. Published on CDROM, p. 1-4.

Chapter 3: Soil Profiles and Statistics

Brenda J. Buck, Colin R. Robins, and Amanda J. Williams

I. Purpose

An important project directive was to measure soil physical and chemical characteristics in order to try and better understand the parameters that might be controlling the presence and habitat potential of Las Vegas buckwheat. In this portion of the study, we excavated and described 97 soil profiles in buckwheat habitat, potential habitat, and non-habitat in the three study sites: Coyote Springs, Bitter Spring, and Gold Butte. Additionally, we collected and analyzed soil samples to determine the chemical and physical parameters that are known to affect vegetation, including the essential macro- and micronutrients.

Soil profiles are composed of one or more distinct genetic horizons that reflect physical, chemical, and/or biological processes at the Earth's surface. Profiles also influence these processes through complex feedback dynamics. By definition, each genetic horizon has distinct physical and chemical characteristics that result from numerous geological, chemical, biological and climatic processes through time. Soil properties such as texture, pH, salinity, and cation exchange capacity can vary widely among horizons and influence vegetation dynamics in many different ways (Chapter 1). Although soil horizons generally parallel the Earth's surface, the many soil-forming factors occurring through time can create abrupt and highly variable changes in the depths of soil horizons across a landscape. Consequently, studies that sample by depth and ignore genetic horizons run a very high risk of compounding error by ignoring the very soil processes that control the characteristics being measured. Studies that compare soil characteristics by depth will partially or wholly mask edaphic controls by averaging distinct chemical and physical characteristics together. On the other hand, sampling by genetic horizon may entail greatly increased sample numbers and necessarily more complex statistical interpretations.

Objective

The soil profile descriptions, sampling, laboratory analyses, and statistics described in this chapter comprise an attempt to test more comprehensively and rigorously for relationships between soil characteristics and the spatial distribution of *Eriogonum corymbosum* var *nilesii*. These relationships are used to determine soil characteristics specific to three sites of Las Vegas buckwheat habitat in Clark County, Nevada.

Background

As explained in Chapter 2, "buckwheat" sites in this study are those which contain *Eriogonum corymbosum* var *nilesii*, whereas "non-buckwheat" sites are those in which the species is absent for a distance of at least 50 to 100 m, or for the full spatial extent of the surficial geologic map unit polygon in which the site occurs. Buckwheat "habitat" and "non-habitat" are defined in a similar fashion, such that the "buckwheat present" and "buckwheat habitat"classes

Final Report (CH3)

are synonymous, while all non-habitat sites are encompassed by the non-buckwheat class. "Potential" habitat sites represent areas that do not currently contain buckwheat, but based upon field observations, appear to have similar geomorphic and soil characteristics to known buckwheat habitats. Therefore, we hypothesize that these areas could potentially support buckwheat, but the plants have not yet become established for reasons unknown.

II. Methodology

Soil Profile Descriptions

Using surficial geologic maps and other data described in Chapter 2, approximately thirty sites at each study area were chosen for detailed soil and surface analysis (Figures 3-1, 3-2, & 3-3). Each site was contained within one surficial geologic unit (Chapter 2), contained one described and sampled soil profile (this chapter), and contained one or more canopy classes whose surface characteristics were also extensively analyzed (Chapter 4). A total of 97 sites were established: 30 at the Coyote Springs study area, 37 at Gold Butte, and 30 at Bitter Spring. Sites were distributed in an attempt to obtain data from all key surficial geologic map units identified within each study area, and from each of the three habitat classes (Habitat, Non-habitat, and Potential habitat). Site distributions were also designed to yield replication adequate for statistical analysis.

Soil profile description and sampling was conducted between April 13th and May 24th, 2010. Horizon descriptions and nomenclature followed standard procedures and terminology prescribed by Schoenenberger (2002) and Soil Survey Staff (2010). Rectangular, 0.5 to 1.0 m² pits for soil profile description were excavated with shovels and picks to a depth of approximately one meter, or to unaltered parent material (C horizon), or to an impenetrably indurated soil horizon, whichever was reached first. Data recorded at each pit were: horizon type, depth (thickness), boundary type, color, structure, coarse fragment content, soil consistence, mottles, redoximorphic features, concentrations, ped void or surface features, roots, pores, and effervescence in dilute (10%) hydrochloric acid. Coarse fragments (> 2 mm) were estimated volumetrically after sieving in the field. Soil surface characterization data, collected synchronously alongside the soil profile descriptions, are presented separately (Chapter 4).

Soil Sampling

Soil samples (2 to 5 kg each) were collected from all horizons immediately following soil profile description and surface characterization. Coarse fragments were excluded from soil samples by sieving whenever the total volume of rock fragments in a given horizon exceeded 5 to10%. A total of 319 samples were collected from the described soil horizons: 101 from Coyote Springs, 126 from Gold Butte, and 92 from Bitter Spring. All samples were collected in sealable bags of clean, unused industrial plastic and stored at University of Nevada Las Vegas Environmental Soil Analysis Laboratory (ESAL) until analysis initiated in June, 2010.

Figure 3-1: Distribution of sites within the Coyote Springs study area, superimposed on a shaded relief map.

Figure 3-2: Distribution of sites within the Gold Butte study area, superimposed on a shaded relief map. Sites are generally closer together at Gold Butte than in the other study areas (see inset).

Figure 3-3: Distribution of sites within the Bitter Spring (White Basin) study area, superimposed on a shaded relief map.

Soil Laboratory Analysis

Approximately 1,000 g of soil from each of the original samples was spread to air-dry, sieved to exclude all coarse fragments (i.e., < 2 mm), and then re-bagged for analysis at ESAL. Concretions or soil aggregates indurated by gypsum or carbonate were gently crushed by hand when possible, but excluded during sieving when they were too rigid to disaggregate manually. Laboratory analyses produced a total of 33 data values for each sample. Measurements included: soil moisture content, pH, electrical conductivity, total nitrogen, total carbon, organic carbon, inorganic carbon, percent carbonate equivalence, plant available cations, soluble anions, cation exchange capacity, and soil texture. Ca/Mg and K/(Ca+Mg) ratios were also calculated from

Final Report (CH3)

these raw data. Whenever possible, analyses followed standard procedures of the Soil Survey Laboratory (Burt, 2004). However, alternative methodologies were used when traditional methods were known to cause significant errors as a result of the presence of soluble salts and cements (common in arid soils).

The pH of arid soils is best evaluated using a combination of methods that partly distinguish between active and salt-replaceable/exchangeable acidity (McBride, 1994; Burt, 2004; Essington, 2004; Brady & Weil, 2008). We used three methods to measure pH with a VWR SB70P pH/ISE/temperature meter. First, we measured a one-to-one soil-to-water ratio (Burt, 2004; method 4C1a2a1), and a 1:2 ratio of soil to 0.01 M CaCl₂ solution (Burt, 2004; method 4C1a2a2). We also measured the pH of saturated paste extracts (Burt, 2004; method 4C1a1a2). This latter method is often assumed to be the most representative of natural field conditions and is especially used for arid region soils with soluble salts (Burt, 2004). Typically, 1:1 H₂O pH > 1:2 CaCl₂ pH > saturated paste pH, however, these trends depend on salinity and sodicity values and require careful interpretation (Burt, 2004). Saturated paste extracts were also used to measure electrical conductivity (Burt, 2004; method 4F2b1) with a Fisher Scientific Accumet BASIC AB30 conductivity meter.

Gravimetric moisture content was determined using the methods of Burt (2004), however this measure is also greatly influenced by the presence of hydrous minerals (i.e. gypsum and other salts). When hydrous minerals are present, gravimetric water content is overestimated. Anion concentrations used in soluble salt content analyses and calculations included chloride, sulfate, nitrate, and nitrite (Burt 2004; method 4F2c1b1a1-8). These were measured on saturated paste extracts using a Dionex ICS-3000 DC RFIC ion chromatographer. Plant available phosphorous was measured using a Perkin Elmer Lambda-25 UV/via spectrometer (Burt, 2004; method 4D5a1). Total carbon and total nitrogen were determined using a Vario Max CNS elemental analyzer (Burt, 2004; method 1B1b2d1) and the percent equivalence of soil carbonate was determined via digital monometer (Burt, 2004; method 4E1a1). Total inorganic carbon was calculated as 0.12*CaCO₃ equivalence, and organic carbon content was calculated as the difference between total C and inorganic C.

Plant available ions were extracted following the Mehlich No. 3 method (Burt, 2004, method 4D6) and analyzed using two distinct instruments. The four major elements (Na, K, Mg, and Ca) were measured on a Perkin-Elmer atomic adsorption flame spectrometer (AAS) (Burt, 2004; method 4B1b1b; Tan, 1996) in ESAL, while P, Mn, Fe, Ni, Cu, Zn, Co, B and As (Burt, 2004; method 4D6b) and Mo (Fontes & Coelho, 2005) were measured on an inductively coupled plasma spectrometer (ICP-MS) at California State University, Bakersfield.

Sodium adsorption ratio (SAR) and cation exchange capacity (CEC) were calculated after using the NH₄OAC method to measure Ca, Mg, Na, and K (Burt, 2004; method 4B1a1a1a1). Soils containing gypsum and other soluble salts pose significant difficulties in obtaining accurate CEC measurements. No method has been developed to accurately measure cation concentrations in soils containing salt minerals.

Soil particle size distributions (soil texture) were measured using a Malvern Mastersizer 2000 laser diffraction particle size analyzer and a modified procedure that employed isopropyl alcohol in place of deionized water during analysis. This modified procedure (Buck et al., 2011, unpublished data) is designed to prevent dissolution of gypsum and other soluble salt particulates. All traditional soil texture methods require the removal of soluble salts and CaCO₃ prior to analyses. As such, these older methods only measure particle sizes of insoluble minerals, and do not accurately represent natural field conditions in arid soils.

XRD Analysis

X-ray diffraction (XRD) analysis of (1) whole-sample (bulk) mineralogy, and (2) phyllosilicate mineralogy was conducted on selected samples to provide greater context for interpretation of soil chemical data.

Bulk XRD analyses were conducted on crushed, powdered samples using a PANalytical X'pert Pro X-ray diffraction spectrometer at the UNLV XRF/XRD Laboratory. Analyses were run using spinner-stage scans from 4 to 80° 20, at 45 kV and 40 mA, and using $1/2^{\circ}$ antiscatter and $1/4^{\circ}$ divergence slits.

Phyllosilicate mineralogy was conducted following treatment of bulk samples in pH 5 sodium acetate buffer solution (NaOAc) to digest carbonates (Jackson, 1965; Kunze & Dixon, 1986), sodium hypochlorite to remove organic matter (Soukup et al., 2008), and citrate-dithionite buffer (CDB) solution (Soukup et al., 2008) to remove amorphous iron and aluminum oxides that would obscure important clay-mineral peaks. The clay-sized particle fraction of the treated samples was fractionated by centrifugation and pipetting (Soukup et al., 2008) between hypochlorite and CDB treatments. Each sample was divided into separate aliquots for MgCl₂ and KCl saturation (Soukup et al., 2008), and the Mg- and K-saturated samples were then smeared onto frosted, glass slides for analysis.

Following base-line XRD analysis of the samples at room-temperature, Mg-treated sample slides were saturated with ethylene glycol under vacuum at 50°C overnight and rescanned. K-treated slides were heated to 400°C for two hours and then analyzed. After analysis, the K-treated slides were heated again for two hours at 550°C and re-scanned. All slides were analyzed within 2 hours of heating and/or ethylene glycol saturation. The clay mineralogical analyses were also conducted on a PANalytical X'pert Pro X-ray diffraction spectrometer. XRD analyses used Cu K α radiation for continuous, 10 minute flat-stage scans from 3 to 40° 20, at 45 kV and 40 mA, and using 1/4° antiscatter and 1/8° divergence slits.

XRD data were interpreted using XPert High Score Plus software. Detailed interpretations were also made by comparing data to published clay mineralogy and x-ray diffraction references (Dixon & Weed, 1989; Moore & Reynolds, 1997; Poppe et al., 2001).

Grouping Data for Statistical Analysis

There are many viable means of statistically analyzing pairs or groups of multivariate data sets. The non-parametric univariate and bivariate statistical methods chosen in this study

Final Report (CH3)

suited the desired comparisons and the distributions and complexities of these unique data. Multivariate analyses were not performed because most require high numbers of samples (n>100), which would have necessitated grouping all data together. Combining all samples would have masked many statistically significant relationships observed when data were analyzed by site, habitat class, soil profile, and specific soil horizons.

Hierarchical distinctions were used to parse or to combine data into discrete conceptual groups for comparison. As we have already described in Chapter 2, the primary interest of this project was to detect and to explain differences between areas populated by buckwheat and areas in which it was absent. Thus, the most fundamental conceptual groups relate to the distribution of buckwheat within the study areas. Each individual data record (i.e., a horizon sample or averaged profile value) was classified as: (1) Buckwheat or Non-buckwheat, and as (2) Habitat, Non-habitat, or Potential Habitat. Identical statistical analyses were run for each of these systems (Figures 3-4 & 3-5). Following this fundamental division, data could be further grouped across all study areas, or divided into data sets for each individual study area (Figures 4 & 5). This constitutes the second conceptual data grouping used in this study, and it includes four classes: (1) Coyote Springs, (2) Gold Butte, (3) Bitter Spring, or (4) all areas combined.

Third, our data could be grouped to illustrate significant trends or differences based on genetic soil horizons, or, for greater simplicity and/or for comparison with other studies, based on whole-profile averages. Thus, this division contains four classes: (1) whole profile data, (2) A horizon data, (3) B horizon data, and (4) C horizon data.

Finally, there are several ways to consider data within profile or horizon classes. Nonparametric t-tests compare the median values of raw data groups, however, complex natural relationships among multiple variables may not be detectable using medians only. Therefore, chemistry and texture data from the soil profiles were processed prior to statistical analysis to simplify profile and horizon classes into minimum, maximum, mean, and thickness-weighted mean values for each site (Table 3-1). For example, the whole profile mean for a profile containing Av, Bw1 and Bw2, and Cr horizons was calculated by averaging those four distinct values together, while the thickness-weighted mean was calculated by first weighting each value based on the thickness of each horizon as a percentage of the whole profile (Table 3-1). We sought statistical trends among calculated values for each horizon and profile class for each of the 33 laboratory variables (Figure 3-4).

Figure 3-4: Schematic illustration of data groups for unpaired non-parametric t-tests, showing division by buckwheat presence/absence or habitat class (top row), study area (second row), horizon or profile (third row), and data group (fourth row). All comparisons tested for differences between buckwheat groups among 33 variables. BW = Buckwheat present, NBW = buckwheat absent, HAB = Habitat, PHAB = Potential Habitat, and NHAB = Non-Habitat.

Table 3-1: Horizon and prof	ile data processing
Data Type	Description & Processing
Profile Minimum	Within each profile, the minimum analyte value reported among the A, B, and C horizons
Profile Maximum	Within each profile, the maximum analyte value reported among the A, B, and C horizons
Profile Mean	Within each profile, the mean analyte value from the A, B, and C horizons <i>Profile mean</i> = (A value + B value + C value)/3
Profile Thickness-weighted Mean	Within each profile, the weighted mean analyte value from the A, B, and C horizons, where values are weighted by horizon thickness (as a % of whole- profile thickness).
Horizon Minimum	Within each master horizon from each profile, the minimum analyte value reported among the component horizons (<i>i.e.</i> , for a B horizon: the single lowest value among Bk1, Bk2, By, etc. at each site)
Horizon Maximum	Within each master horizon from each profile, the maximum analyte value reported among the component horizons.
Horizon Mean	Within each master horizon from each profile, the mean analyte value reported its component horizons Ex: <i>B horizon Mean</i> = $(Bk1 value + Bk2 value)/2$
Horizon Thickness- weighted Mean	Within each master horizon from each profile, the weighted mean analyte value of the componenent horizons, where values are weighted by horizon thickness.

Statistical Methods

Sets of non-parametric independent sample t-tests (Mann-Whitney U Tests) were used to quantify differences among whole-profile and horizon characteristics associated with the presence/absence and habitat potential of buckwheat (Figure 3-1). T-tests were completed at the 0.05 significance level and were conducted in IBM SPSS Statistics 19. Descriptive statistics of variables from individual t-test groups were calculated and produced the following data: number of samples, minimum, maximum, range, mean, standard deviation of mean, variance, mean standard error and median. It is important to remember that these analyses were run on pre-grouped (rather than unsorted raw) data values, thus, the "median" stated in our results and used to assess statistical significance is the median among mean, minimum, maximum, or weighted-mean values. This held true for all Mann-Whitney U tests except for those comparing Ca:Mg and K/(Ca + Mg) ratios. Here, we calculated these values on a sample by sample basis using the raw chemical data, not the median values.

To gain further insights into the possible causes of significant trends detected the by nonparametric t-tests, we also employed Spearman rank correlation tests in IBM SPSS Statistics 19. These tests illustrated co-variance between specific variables including, but not limited to percent $CaCO_3$ equivalence and plant-available Fe.

III. Results

Maps of study area and site locations (see Chapter 1), and the distribution of habitat classes within each study area were previously presented in this report (see Chapter 2).

Written soil profile descriptions, which explain the changes among soil characteristics between genetic horizons within each profile and, thus, also implicitly explain the reasoning behind horizon divisions, are presented in the Appendix. These data are a written summary of Deliverable 14, Soil Profile Descriptions, which was submitted in November, 2010 using NRCS National Soil Information System abbreviations.

Laboratory analysis of 319 samples, and statistical analysis of the 33 distinct variables for each one of those samples, predictably produced a data set too large to present concisely outside of a digital spreadsheet. Instead, a summary of the laboratory data is presented in Tables 3-2 through 3-5, which indicates the minimum, maximum, and mean of each analyte for Coyote Springs (Table 3-2), Gold Butte (Table 3-3), Bitter Spring (Table 3-4), and all areas combined(Table 3-5).

Results of the XRD analyses are summarized in Tables 3-6 for bulk mineralogy, and 3-7, for phyllosilicate mineralogy.

Results of Mann-Whitney Tests

These results have been greatly simplified in this chapter for ease of display and discussion. Results of Mann-Whitney tests are presented in Tables 3-8 to 3-43, each of which presents the p-value and the median values for each of the two compared classes (i.e., buckwheat/non-buckwheat, habitat/potential habitat, potential habitat/non-habitat), for each variable found to have significant differences between classes. Furthermore, each numbered table consists of four sub-tables that describe the results for (a) Coyote Springs, (b) Gold Butte, (c) Bitter Spring, and (d) all study areas combined. At Coyote Springs, no C horizons were present in buckwheat/habitat soil profiles, so C-horizon statistics could not be performed for that study area. Results are presented first for comparisons between Buckwheat and Non-buckwheat sites, second for Habitat versus Potential Habitat sites, and third for Potential Habitat versus Non-habitat sites. Statistical analyses of calculated Ca/Mg and K/(Ca + Mg) ratios by profile and by horizon are presented separately (Tables 3-44 to 3-47). For assistance in navigating these tables, we outline the order of these tables here:

(i) Buckwheat vs. Non-buckwheat

- Soil Whole Profile mean (Table 3-8)
- Soil Whole Profile minimum (Table 3-9)

- Soil Whole Profile maximum (Table 3-10)
- Soil Whole Profile weighted mean (Table 3-11)
- A Horizon mean (Table 3-12)
- B Horizon mean (Table 3-13)
- C Horizon mean (insufficient data at CS) (Table 3-14)
- A Horizon minimum (Table 3-15)
- A Horizon maximum (Table 3-16)
- B Horizon minimum (Table 3-17)
- B Horizon maximum (Table 3-18)
- C Horizon minimum (insufficient data at CS) (Table 3-19)
- C Horizon maximum (insufficient data at CS) (Table 3-20)
- A Horizon thickness-weighted mean (Table 3-21)
- B Horizon thickness-weighted mean (Table 3-22)
- C Horizon thickness-weighted mean (Table 3-23)

(ii) Habitat vs. Potential Habitat

- Soil Whole Profile mean (Table 3-24)
- Soil Whole Profile minimum (Table 3-25)
- Soil Whole Profile maximum (Table 3-26)
- Soil Whole Profile weighted mean (Table 3-27)
- A Horizon mean (Table 3-28)
- B Horizon mean (Table 3-29)
- C Horizon mean (Table 3-30)
- A Horizon minimum (Table 3-31)
- A Horizon maximum (Table 3-32)
- B Horizon minimum (Table 3-33)
- B Horizon maximum (Table 3-34)
- C Horizon minimum (Table 3-35)
- C Horizon maximum (Table 3-36)
- A Horizon thickness-weighted mean (Table 3-37)
- B Horizon thickness-weighted mean (Table 3-38)
- C Horizon thickness-weighted mean (Table 3-39)

(iii) Potential Habitat vs. Non Habitat

- Soil Whole Profile mean (Table 3-40)
- A Horizon mean (Table 3-41)
- B Horizon mean (Table 3-42)
- C Horizon mean (Table 3-43)

(iv) Summary of relative trends

- Buckwheat vs. Non-buckwheat Sites (Table 3-44)
- Habitat vs. Potential Habitat (Table 3-45)
- Potential Habitat vs. Non-habitat (Table 3-46)

(v) Buckwheat versus Non-buckwheat – Ca/Mg and K/(Ca+Mg) ratios

- Profile medians (Table 3-44)
- A horizon medians (Table 3-45)
- B horizon medians (Table 3-46)
- C horizon medians (Table 3-47)

We also provide relative trend summary tables for all t-tests, grouped by habitat comparison (Tables 3-48 through 3-50).

Results of the Spearman rank coefficient tests

Significant correlations identified by the Spearman tests are summarized in Tables 3-51 through 3-110. These tables are organized first by study area in the order: Coyote Springs, Gold Butte, Bitter Spring, and All Areas combined, for correlations using (1) Profile means (Tables 3-51 to 3-66), (2) A horizon raw data (Tables 3-67 to 3-82), (3) B horizon raw data (Tables 3-83 to 3-98), and (4) C horizon raw data (Tables 3-99 to 3-110). Because few C horizons were sampled at Coyote Springs, this study area is not present in the Spearman's rho correlation tests of C horizon data.

Table 3-2: Minimum,	Maximu	m, and Me	ean values	of labor	atory samp	ole data be	etween si	te classes	at Coyote	Springs		
	NO	n-Buckwh	leat	Buck	wheat / H	abitat	Pot	ential Hal	oitat	N	Von-Habit	at
Variable	NIM	MAX	MEAN	MIN	MAX	MEAN	NIM	MAX	MEAN	NIM	MAX	MEAN
Horizon Thickness (cm)	I	35	13	2	43	12	1	35	12	2	33	15
Moisture Content (%)	0.394	6.221	2.051	0.814	12.252	3.066	0.641	6.221	2.319	0.394	3.930	1.766
pH 1:1 H ₂ O	8.05	9.25	8.62	8.02	9.01	8.60	8.10	9.13	8.60	8.05	9.25	8.64
pH CaCl ₂	7.82	8.27	8.01	7.73	8.32	8.03	7.82	8.25	8.01	7.83	8.27	8.02
pH Sat'd paste	6.90	8.04	7.59	6.98	8.34	7.70	6.90	7.99	7.59	6.97	8.04	7.58
ECe Sat'd. Paste	0.170	10.100	0.692	0.179	4.010	0.579	0.197	10.100	0.935	0.170	5.029	0.435
Total N %	0.001	0.037	0.011	0.000	0.022	0.008	0.001	0.037	0.010	0.004	0.033	0.012
Total C %	3.741	8.469	6.336	5.144	8.977	7.346	5.045	8.469	6.797	3.741	8.378	5.846
Organic C %	0.011	1.191	0.144	0.008	1.426	0.177	0.014	0.602	0.123	0.011	1.191	0.165
Inorganic C %	3.626	8.302	6.192	5.092	8.579	7.169	5.025	8.175	6.673	3.626	8.302	5.680
CaCO ₃ %	30.218	69.179	51.599	42.433	71.496	59.740	41.871	68.126	55.612	30.218	69.179	47.336
CI ⁻ (ppm)	1.000	1732.680	56.205	1.000	77.720	7.255	1.000	1732.680	89.335	1.480	482.160	21.003
SO_4^{2-} (ppm)	7.280	14526.880	391.735	11.520	5096.480	343.904	8.940	14526.880	510.282	7.280	7261.300	265.778
NO3 ⁻ (ppm)	0.040	1371.900	25.585	0.400	27.320	3.020	0.600	1371.900	46.348	0.040	45.900	3.524
B (µg/g)	0.003	1.302	0.095	0.017	1.529	0.157	0.003	1.302	0.102	0.012	0.728	0.088
P (μg/g)	0.032	5.195	1.139	0.040	3.007	0.294	0.032	4.692	0.787	0.040	5.195	1.514
Mo (ppb) μg/kg	0.100	4.900	1.842	0.200	29.920	2.981	0.220	4.900	2.414	0.100	3.880	1.234
Mn (µg/g)	0.268	5.271	1.271	0.454	1.652	0.968	0.268	4.161	1.155	0.317	5.271	1.395
Fe (µg/g)	4.679	15.346	10.244	7.095	17.407	13.496	6.642	15.346	11.334	4.679	15.285	9.086
Co (µg/g)	0.002	0.051	0.008	0.003	0.011	0.006	0.002	0.051	0.007	0.002	0.025	0.009
Ni (µg/g)	0.030	0.141	0.085	0.045	0.155	0.117	0.030	0.141	0.094	0.030	0.140	0.075
Cu (µg/g)	0.036	0.184	0.077	0.052	0.154	0.073	0.046	0.184	0.080	0.036	0.121	0.074
Zn (µg/g)	0.005	0.266	0.045	0.015	0.097	0.037	0.014	0.266	0.048	0.005	0.169	0.042
As (µg/g)	0.004	0.086	0.025	0.009	0.445	0.044	0.004	0.086	0.025	0.009	0.076	0.026
Na (µg/g)	19.180	233.830	42.501	32.071	68.420	39.194	19.180	233.830	45.581	28.177	71.287	39.228
K (µg/g)	7.079	50.899	21.143	12.287	61.131	25.920	7.079	50.899	21.618	8.589	48.609	20.638
Ca (µg/g)	125.928	1277.346	663.994	344.606	1379.092	991.296	125.928	1277.346	760.739	143.815	1201.541	561.204
Mg (µg/g)	60.972	471.022	172.597	108.978	551.538	252.146	80.826	471.022	212.176	60.972	271.125	130.546
CEC (cmol _c /kg)	2.915	31.643	10.531	*	*	*	3.005	31.643	11.490	2.915	29.764	9.512
Clay %	0.36	21.90	8.98	5.67	19.04	10.96	0.78	21.90	7.80	0.36	20.54	10.24
Silt %	2.36	41.39	22.13	15.53	32.62	23.88	4.36	41.39	22.82	2.36	38.44	21.40
Sand %	42.96	97.28	68.89	52.30	74.45	65.17	42.96	94.86	69.38	49.86	97.28	68.36
		J 11										

*Data for CEC (cmol $_c/k$ g) are not available for all samples. Data for all horizons (all A, B, C samples, but no surface/canopy samples)

94

Table 3-3: Minimum,	Maximu	m, and Me	an values	of labora	atory samp	ole data be	stween si	te classes ¿	it Gold Bi	utte.		
	No	n-Buckwl	neat	Buck	wheat / H	abitat	Pot	ential Hal	oitat	N	Ion-Habit	at
Variable	NIN	MAX	MEAN	NIN	MAX	MEAN	NIN	MAX	MEAN	NIM	MAX	MEAN
Horizon Thickness (cm)	2	50	16	2	33	14	2	50	16	3	41	16
Moisture Content (%)	0.14	20.14	6.31	0.57	16.98	6.40	0.30	20.14	8.31	0.14	17.26	2.42
pH 1:1 H ₂ O	7.74	9.18	8.31	7.83	8.62	8.19	7.74	8.90	8.15	7.81	9.18	8.62
pH CaCl ₂	7.61	9.05	8.23	7.66	8.60	8.12	7.61	8.86	8.08	7.69	9.05	8.54
pH Sat'd paste	6.71	8.32	7.62	7.12	8.11	7.69	6.71	8.32	7.58	7.28	8.29	7.69
ECe Sat'd. Paste	0.194	17.240	2.235	1.538	10.340	2.791	0.208	17.240	2.684	0.194	11.000	1.366
Total N %	0.003	0.117	0.022	0.005	0.086	0.020	0.003	0.117	0.025	0.003	0.065	0.015
Total C %	0.467	6.427	2.375	1.366	7.993	4.836	0.467	6.427	2.791	0.644	4.892	1.570
Organic C %	0.012	2.596	0.273	0.020	0.878	0.284	0.012	1.023	0.295	0.018	2.596	0.229
Inorganic C %	0.071	6.330	2.103	0.981	7.771	4.552	0.071	6.330	2.495	0.551	4.620	1.342
CaCO ₃ %	0.594	52.752	17.521	8.175	64.757	37.929	0.594	52.752	20.793	4.595	38.502	11.181
CI ⁻ (ppm)	0.100	2433.920	92.097	0.200	835.280	77.846	0.200	2433.920	118.831	0.100	899.880	40.301
SO_4^{2-} (ppm)	24.260	18735.980	2875.004	520.160	13276.200	3669.406	132.960	18735.980	3550.549	24.260	10057.300	1566.135
NO3 ⁻ (ppm)	0.020	785.880	24.559	0.020	199.260	17.239	0.020	785.880	35.748	0.060	13.480	2.879
B (µg/g)	0.015	0.592	0.126	0.026	5.365	0.338	0.015	0.592	0.144	0.021	0.298	0.092
$P(\mu g/g)$	0.000	5.549	1.508	-0.049	4.278	0.984	0.103	5.318	1.333	0.000	5.549	1.846
Mo (ppb) µg/kg	0.160	16.300	1.803	0.160	8.180	1.573	0.240	16.300	2.105	0.160	6.200	1.219
Mn (µg/g)	0.437	7.074	1.940	0.340	4.897	1.584	0.437	5.790	1.893	0.507	7.074	2.031
Fe (µg/g)	2.639	21.760	7.816	5.476	21.627	10.156	3.792	21.760	8.652	2.639	17.434	6.197
Co (µg/g)	0.004	0.042	0.014	0.004	0.040	0.012	0.004	0.031	0.013	0.005	0.042	0.015
Ni (µg/g)	0.020	0.188	0.076	0.042	0.157	0.095	0.037	0.188	0.084	0.020	0.171	0.060
Cu (µg/g)	0.046	0.208	0.100	0.044	0.189	0.101	0.051	0.208	0.105	0.046	0.144	0.089
Zn (µg/g)	0.011	0.650	0.070	0.018	0.153	0.059	0.016	0.650	0.073	0.011	0.247	0.063
As (µg/g)	0.003	0.247	0.061	0.005	6.234	0.321	0.003	0.247	0.072	0.009	0.161	0.040
Na (µg/g)	23.259	154.132	40.725	26.118	65.160	38.903	23.259	154.132	41.257	24.098	96.195	39.693
K (µg/g)	2.362	29.297	9.823	1.759	74.359	11.457	2.805	29.297	9.474	2.362	21.623	10.500
Ca (µg/g)	118.491	2670.155	1006.286	290.310	1507.460	1042.493	288.664	2670.155	1167.989	118.491	1844.621	692.988
Mg (µg/g)	9.089	590.215	65.107	15.386	681.419	132.306	9.089	590.215	72.014	9.626	345.754	51.725
CEC (cmol _c /kg)	2.102	13.839	5.919	*	*	*	2.102	13.839	5.782	3.000	11.590	6.190
Clay %	2.09	20.11	8.79	4.21	17.76	8.56	2.71	14.75	8.60	2.09	20.11	9.17
Silt %	5.09	54.65	28.13	15.26	51.20	26.16	14.08	48.26	27.79	5.09	54.65	28.78
Sand %	34.40	92.82	63.08	39.85	78.44	65.28	42.41	77.63	63.61	34.40	92.82	62.05
		J 11 1.	-									

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

95

Table 3-4: Minimum,	Maximu	m, and Me	an values	of labora	ttory samp	ole data be	tween si	e classes a	tt Bitter S	pring.		
	10N	n-Buckwh	leat	Buck	wheat / H	abitat	Pot	ential Hal	oitat	N	Von-Habit	at
Variable	NIM	MAX	MEAN	NIN	MAX	MEAN	NIN	MAX	MEAN	NIN	MAX	MEAN
Horizon Thickness (cm)	2	42	16	2	43	16	3	34	15	2	42	16
Moisture Content (%)	0.60	17.17	5.81	1.84	14.55	6.68	3.01	17.17	8.67	0.60	11.93	3.77
pH 1:1 H ₂ O	7.56	9.46	8.40	7.78	8.76	8.12	7.85	8.95	8.35	7.56	9.46	8.44
· pH CaCl ₂	7.50	8.96	8.33	7.65	8.71	8.06	7.85	8.93	8.31	7.50	8.96	8.35
pH Sat'd paste	6.60	8.70	7.44	6.67	7.93	7.29	6.60	8.70	7.51	6.74	8.15	7.39
ECe Sat'd. Paste	0.188	25.630	3.458	0.261	5.132	2.526	0.291	25.630	5.890	0.188	10.470	1.721
· Total N %	0.001	0.035	0.013	0.001	0.035	0.010	0.001	0.035	0.014	0.002	0.032	0.013
Total C %	0.300	6.968	3.242	1.715	7.256	3.947	0.300	6.968	2.625	0.842	6.272	3.682
Organic C %	0.003	0.736	0.135	0.016	1.072	0.158	0.003	0.417	0.130	0.014	0.736	0.138
Inorganic C %	0.181	6.827	3.107	1.562	7.240	3.789	0.181	6.827	2.495	0.796	6.145	3.545
CaCO ₃ %	1.506	56.894	25.893	13.019	60.334	31.578	1.506	56.894	20.789	6.631	51.208	29.538
CI ⁻ (ppm)	0.400	1512.040	111.804	0.200	443.420	21.118	0.400	1512.040	157.289	0.400	1235.520	79.314
SO_4^{2-} (ppm)	30.380	31500.340	4165.124	56.180	9163.540	3647.338	61.220	31500.340	7169.923	30.380	9304.320	2018.839
NO3 ⁻ (ppm)	0.600	208.660	14.080	0.600	13.080	2.106	0.600	208.660	26.939	0.600	36.360	4.895
B (μg/g)	0.055	44.451	3.620	0.004	2.153	0.263	0.089	44.451	7.790	0.055	8.230	0.641
P (μg/g)	0.066	3.025	0.735	0.015	1.767	0.511	0.105	2.600	0.815	0.066	3.025	0.677
Mo (ppb) µg/kg	0.280	716.060	38.954	0.300	5.460	1.793	0.280	716.060	86.385	0.400	105.600	5.074
Mn (µg/g)	0.221	8.376	1.819	0.011	4.286	1.704	0.229	8.376	2.710	0.221	4.606	1.183
Fe (µg/g)	4.698	17.762	10.323	0.222	17.224	11.821	4.889	17.649	9.427	4.698	17.762	10.963
Co (µg/g)	0.005	0.038	0.011	0.000	0.015	0.008	0.005	0.032	0.012	0.005	0.038	0.011
Ni (µg/g)	0.029	0.194	0.088	0.000	0.155	0.107	0.029	0.161	0.067	0.035	0.194	0.104
Cu (µg/g)	0.045	0.497	0.109	0.002	0.160	0.088	0.050	0.305	0.107	0.045	0.497	0.110
Zn (µg/g)	0.012	0.324	0.053	0.001	0.126	0.057	0.017	0.154	0.055	0.012	0.324	0.050
As (µg/g)	0.022	13.538	1.796	0.004	5.874	1.193	0.038	13.538	3.013	0.022	6.061	0.927
Na (µg/g)	27.632	1755.284	189.437	0.225	77.200	39.998	35.013	1755.284	389.654	27.632	189.175	46.424
K (µg/g)	7.253	475.768	72.463	0.300	992.649	126.218	7.253	475.768	123.340	8.191	88.177	36.122
Ca (µg/g)	140.368	1689.803	789.050	8.353	1352.746	966.302	140.368	1634.000	572.230	170.050	1689.803	943.922
Mg (µg/g)	38.156	413.550	94.407	0.340	155.494	79.950	43.371	413.550	117.705	38.156	218.911	77.766
CEC (cmol _c /kg)	4.358	34.247	14.895	*	*	*	4.358	34.247	15.065	6.440	32.026	14.770
Clay %	0.717	12.529	5.332	2.092	12.322	6.185	0.869	11.061	5.774	0.717	12.529	5.017
Silt %	3.577	44.028	24.043	13.622	48.665	28.039	4.610	44.028	27.580	3.577	40.865	21.517
Sand %	44.912	95.702	70.625	45.319	84.286	65.776	44.912	94.313	66.646	47.418	95.702	73.466
*Data for CEC (cmol $_c/kg$)	are not av	ailable for a	ll samples.									

Data for all horizons (all A, B, C samples, but no surface/canopy samples)

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

	Table 3-5: Minimum,	Maximu	m, and Me	ean values	of labora	tory samp	ole data be	stween si	te classes	and across	all stud	y areas.	
Gyp 2005		N_0	n-Buckwh	leat	Buck	wheat / H	abitat	Pot	ential Ha	bitat	N	on-Habita	lt
sum 5-UN	Variable	NIM	MAX	MEAN	NIM	MAX	MEAN	NIM	MAX	MEAN	NIM	MAX	MEAN
Soil LV-	Horizon Thickness (cm)	1	50	15	2	43	14	1	50	15	2	42	16
s Ar -609	Moisture Content (%)	0.14	20.14	4.89	0.57	16.98	5.31	0.298	20.143	6.629	0.14	17.26	2.69
nalys F	pH 1:1 H ₂ O	7.56	9.46	8.43	7.78	9.01	8.31	7.74	9.13	8.32	7.56	9.46	8.56
sis T	pH CaCl ₂	7.50	9.05	8.20	7.65	8.71	8.07	7.61	8.93	8.11	7.50	9.05	8.30
ech	pH Sat'd paste	6.60	8.70	7.56	6.67	8.34	7.56	6.60	8.70	7.57	6.74	8.29	7.55
nica	ECe Sat'd. Paste	0.170	25.630	2.106	0.179	10.340	1.923	0.197	25.630	2.859	0.170	11.000	1.191
l Co	Total N %	0.001	0.117	0.016	0.000	0.086	0.013	0.001	0.117	0.019	0.002	0.065	0.013
ondit	Total C %	0.300	8.469	3.800	1.366	8.977	5.436	0.300	8.469	3.899	0.644	8.378	3.699
tions	Organic C %	0.003	2.596	0.196	0.008	1.426	0.206	0.003	1.023	0.213	0.011	2.596	0.176
S	Inorganic C %	0.071	8.302	3.603	0.981	8.579	5.230	0.071	8.175	3.686	0.551	8.302	3.523
	CaCO ₃ %	0.594	69.179	30.028	8.175	71.496	43.587	0.594	68.126	30.720	4.595	69.179	29.357
	CI ⁻ (ppm)	0.100	2433.920	86.704	0.200	835.280	34.553	0.200	2433.920	119.275	0.100	1235.520	47.856
	SO_4^{2-} (ppm)	7.280	31500.340	2481.874	11.520	13276.200	2486.590	8.940	31500.340	3451.453	7.280	10057.300	1305.865
	NO3 ⁻ (ppm)	0.020	1371.900	22.009	0.020	199.260	7.321	0.020	1371.900	37.190	0.040	45.900	3.800
	B (μg/g)	0.003	44.451	1.070	0.004	5.365	0.250	0.003	44.451	1.543	0.012	8.230	0.285
	P (µg/g)	0.000	5.549	1.186	-0.049	4.278	0.587	0.032	5.318	1.072	0.000	5.549	1.325
	Mo (ppb) µg/kg	0.100	716.060	11.947	0.160	29.920	2.142	0.220	716.060	18.399	0.100	105.600	2.587
	$Mn (\mu g/g)$	0.221	8.376	1.706	0.011	4.897	1.405	0.229	8.314	1.800	0.221	7.074	1.526
	Fe (µg/g)	2.639	21.760	9.228	0.222	21.627	11.875	3.792	21.760	9.588	2.639	17.762	8.816
	Co (µg/g)	0.002	0.051	0.011	0.000	0.040	0.008	0.002	0.051	0.011	0.002	0.042	0.012
	Ni (µg/g)	0.020	0.194	0.082	0.000	0.157	0.107	0.029	0.188	0.084	0.020	0.194	0.080
	Cu (μg/g)	0.036	0.497	0.095	0.002	0.189	0.087	0.046	0.305	0.098	0.036	0.497	0.092
	Zn (µg/g)	0.005	0.650	0.058	0.001	0.153	0.050	0.014	0.650	0.062	0.005	0.324	0.052
	As (µg/g)	0.003	13.538	0.523	0.004	6.234	0.505	0.003	13.538	0.633	0.009	6.061	0.349
	Na (µg/g)	19.180	1755.284	81.815	0.225	77.200	39.360	19.180	1755.284	107.682	24.098	189.175	41.923
	K (μg/g)	2.362	475.768	30.303	0.300	992.649	53.664	2.805	475.768	34.680	2.362	88.177	22.835
	Ca (µg/g)	118.491	2670.155	844.352	8.353	1507.460	999.766	125.928	2670.155	936.624	118.491	1844.621	739.105
	Mg (µg/g)	9.089	590.215	105.345	0.340	681.419	157.751	9.089	590.215	120.789	9.626	345.754	86.409
	CEC (cmol _c /kg)	2.102	34.247	9.762	*	*	*	2.102	34.247	9.369	2.915	32.026	10.293
	Clay %	0.4	21.9	7.9	2.1	19.0	8.6	0.8	21.9	7.8	0.4	20.5	8.0
	Silt %	2.4	54.7	25.2	13.6	51.2	26.0	4.4	48.3	26.3	2.4	54.7	23.8
	Sand %	34.4	97.3	6.99	39.9	84.3	65.4	42.4	94.9	65.9	34.4	97.3	68.1
	*Data for CEC (cmol $_c/kg$)	are not av	vailable for a	ll samples.									
9/	Data for all horizons (all A	l, B, C sam	ples, but no	surface/can	opy sample	(S)							

Table 3-6: Ge	neral miner	ral composi	itions of select samp	les, from X	KRD analys	is of bulk powde	er samples.
Bitter Spring	Quartz	Calcite ¹	Dolomite/Ankerite ²	Gypsum	Feldspar ³	Phyllosilicates ⁴	Hab.Class
BS-06-A	XX	XX	Х	Х	Х	Х	HAB
BS-06-ByC	Х	XX		XXX	Х	Х	HAB
BS-06-Cr	XX	XX		XX	Х	Х	HAB
BS-07-A	XX	XX	Х	х	XX	Х	PHAB
BS-07-Bk1	XX	XX	Х	х	XX	Х	PHAB
BS-19-A	XX	XX	Х	XX	Х	Х	HAB
BS-19-By	Х	XX		XXX	х	Х	HAB
BS-26-AC	Х	XX	Х	XXX	Х	Х	PHAB
BS-26-C1	XX	XX	Х	XX	Х	Х	PHAB
Coyote Springs	Quartz	Calcite ¹	Dolomite/Ankerite ²	Gypsum	Feldspar ³	Phyllosilicates ⁴	Hab.Class
CS-10-Av	XX	XX	XX	х	Х	Х	PHAB
CS-10-Bk1	XX	XX	XX	х	Х	Х	PHAB
CS-10-Bk2	XX	XX	XX	х	Х	Х	PHAB
CS-15-A	Х	XX	XXx	х	XX	Х	HAB
CS-15-2Btkb	XX	XX	Xx	х	Xx	Х	HAB
CS-23-Avk	XX	XX	XX		XX	Х	PHAB
CS-23-Bkq	Х	XX	XX		Х	Х	PHAB
CS-23-Bkqm	XX	XX	XX		Х	Х	PHAB
CS-26-Av	X	XX	XX		Х	Х	NHAB
CS-26-Bk	Х	XXX	Х		Х	Х	NHAB
Gold Butte	Quartz	Calcite ¹	Dolomite/Ankerite²	Gypsum	Feldspar ³	Phyllosilicates ⁴	Hab.Class
GB-01-A	X	XX	XX	XX	Х	Х	HAB
GB-01-Bw1	Х	X	XX	XX	Х	Х	HAB
GB-01-Bw2	X	X	XX	XXX	X	Х	HAB
GB-01-Cr	X	XX	XX	XX	X	Х	HAB
GB-04-Av	XX	XX	XX	х	X	Х	PHAB
GB-04-B1	XX	X	XX	х	X	Х	PHAB
GB-04-By	X	XX	XX	XXX	X	Х	PHAB
GB-16-Av	XX	XX	XX	х	х	Х	HAB
GB-16-By	Х	XX	XX	XX	Х	Х	HAB
GB-16-CB	XX	XX	XX	X	Х	Х	HAB
GB-23-A	XX	Х	XX	Х	Х	Х	PHAB
GB-23-By2	Х	Х	XX	XXX	Х	Х	PHAB
GB-28-B	XX	XX	Х		Х	Х	NHAB

¹ Calcite and low-Mg calcite

² Dolomite and ankerite are grouped together in this analysis

³ Feldspars, undifferentiated

⁴ *Phyllosilicate minerals, undifferentiated (see Table 3-7)*

x = present in trace or very minor amounts (< 5% crude semi-quantitative estimate)

 $X = present in some abundance (\sim 5 - 15\%)$

XX = *abundant* (~20-40% *crude semi-quantitative estimate*)

XXX = *Present as the dominant mineral consituent; intense diffraction peaks (> 50%semi-quantitative)*

--- = Absent

Table 3-7: Res	ults of Phy	llosilicate N	Aineralogical analysis on select samp	oles		
Bitter Spring	Kaolinite	Illite/Mica	Expandable Clays (Smectite group)	Chlorite	Quartz	Hab. Class
BS-06-A	X	XX	XX	x	XX	HAB
BS-06-ByC	X	XX	XX	x	XXX	HAB
BS-06-Cr	x	XX	XX	XX	XX	HAB
BS-26-AC	x	X	XX	X	X	PHAB
BS-26-C1	x	x	XXX	-	XX	PHAB
Coyote Springs	Kaolinite	Illite/Mica	Expandable Clays (Smectite group)	Chlorite	Quartz	Hab. Class
CS-10-Av	X	X	XX	x	XX	PHAB
CS-10-Bk1	X	X	XX	x	XXX	PHAB
CS-10-Bk2	x	x	X	?	X	PHAB
CS-15-A	X	X	x	x	XX	HAB
CS-15-2Btkb	X	X	X	x	XX	HAB
Gold Butte	Kaolinite	Illite/Mica	Expandable Clays (Vermiculite group)	Chlorite	Quartz	Hab. Class
GB-04-Av	X	X	X	X	XX	РНАВ
GB-04-B1	X	X	X	X	XX	PHAB
GB-04-By	X	X	XX	-	XX	PHAB
GB-16-Av	X	X	-	X	XX	HAB
GB-16-By	x	X	-	x	X	HAB
GB-16-CB	x	X	-	X^*	XX	HAB

* possibly interstratified Illite-Chlorite

x = present, but in minor or trace amounts

X = present

XX = *present*, *peaks* are prominent within the diffraction patterns

XXX = Present as the dominant mineral consituent; accounts for the maximum diffraction pattern intensity

Table 3-8: Summary of independent non-parametric t-tests for differences amongsoil profile means (all horizons averaged) between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-8a: Summar	ry for Coyote Springs	s sites only.	
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
pH Sat Paste	0.048	7.579	7.713
Total N	0.039	0.011	0.007
Total C	0.002	6.248	7.694
Inorganic C	0.002	6.049	7.553
CaCO ₃	0.002	50.404	62.940
Р	0.002	1.191	0.136
Fe	0.000	10.146	13.497
Ni	0.000	0.084	0.114
Ca	0.000	597.744	977.149
Mg	0.020	146.040	199.908
Coyote Springs n	(number of sites)	20	10
Table 3-8b: Summa	ry for Gold Butte site	s only.	
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	1.922	4.895
Inorganic C	0.000	1.674	4.453
C.CO	0.000	12.046	27 112

Inorganic C	0.000	1.674	4.453
CaCO ₃	0.000	13.946	37.112
Р	0.031	1.373	0.708
Fe	0.011	6.899	10.440
Ni	0.015	0.068	0.096
Mg	0.040	48.673	66.574
CEC	0.001	6.087	4.392
Gold Butte n (ni	umber of sites)	28	9

Table 3-8c: Summar	y for Bitter Spring s	ites only.	
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
pH 1:1	0.015	8.429	8.065
pHCaCl2	0.012	8.384	8.021
NO ₃ ⁻	0.027	3.513	1.980
В	0.021	0.548	0.161
Со	0.024	0.009	0.008
Bitter Spring n (number of sites)	19	11

Table 3-8d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total N	0.018	0.014	0.010
Total C	0.001	3.494	5.690
Inorganic C	0.001	3.319	5.559
CaCO ₃	0.001	27.656	46.329
Р	0.000	1.073	0.467
Fe	0.000	8.889	11.951
Со	0.000	0.010	0.008
Ni	0.000	0.077	0.110
Ca	0.000	774.019	961.053
Mg	0.047	89.906	116.111
All Areas n (nu	umber of sites)	67	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-9: Summary of non-parametric t-tests among soil **profile Minimum**values between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-9a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non- BW Median	BW Median
Total N	0.002	0.006	0.002
Total C	0.001	5.736	6.856
Inorganic C	0.000	5.505	6.625
CaCO ₃	0.000	45.873	55.209
Fe	0.001	7.053	12.245
Ni	0.000	0.042	0.105
K	0.043	12.448	17.235
Ca	0.000	226.869	887.754
Mg	0.001	98.547	168.101
Coyote Springs n	(number of sites)	20	10

Table 3-9b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non- BW Median	BW Median
Total C	0.001	1.245	3.584
Inorganic C	0.001	1.116	2.978
CaCO ₃	0.001	9.299	24.813
В	0.047	0.038	0.108
Р	0.003	0.463	0.042
Fe	0.005	5.602	8.299
Ni	0.009	0.045	0.082
Mg	0.019	18.698	39.106
CEC	0.008	4.193	2.789
Clay	0.037	3.952	6.163
Gold Butte n (ni	umber of sites)	28	9

Table 3-9c: Summary for Bitter Spring sites only.				
Significant Variable p-value (2-tailed) Non- BW Median BW Median				
Ni	0.043	0.049	0.083	
Zn	0.045	0.027	0.044	
Bitter Spring n (1	number of sites)	19	11	

Table 3-9d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non- BW Median	BW Median
Moisture	0.039	1.495	2.689
Total N	0.018	0.007	0.005
Total C	0.000	2.664	4.815
Inorganic C	0.001	2.371	4.629
CaCO ₃	0.001	19.758	38.572
Р	0.000	0.308	0.094
Fe	0.000	6.535	9.662
Ni	0.000	0.043	0.087
Zn	0.048	0.024	0.029
Ca	0.000	375.205	841.512
All Areas n (ni	umber of sites)	67	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-10: Summary of non-parametric t-tests among soil **profile Maximum**values between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-10a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Ni	0.006	0.110	0.128
Zn	0.039	0.070	0.053
As	0.025	0.029	0.051
Ca	0.005	857.171	1168.760
Mg	0.048	190.357	230.641
Coyote Springs n	(number of sites)	20	10

Table 3-10b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.001	2.606	6.659
Inorganic C	0.000	2.320	6.347
CaCO ₃	0.000	19.337	52.893
Fe	0.015	8.259	10.975
Со	0.040	0.018	0.014
Ni	0.026	0.083	0.111
CEC	0.004	8.729	6.665
Gold Butte n (ni	umber of sites)	28	9

Table 3-10c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	No BW Median	BW Median	
pH 1:1	0.006	8.682	8.156	
pH CaCl ₂	0.006	8.671	8.126	
NO ₃ ⁻	0.017	6.920	3.100	
В	0.019	0.733	0.208	
Mo (ppb)	0.041	5.280	2.000	
Со	0.031	0.014	0.010	
Na	0.027	62.841	45.603	
Bitter Spring n (1	number of sites)	19	11	

Table 3-10d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.001	4.390	6.578
Inorganic C	0.001	4.275	6.301
CaCO ₃	0.001	35.624	52.507
Р	0.000	2.323	0.833
Mn	0.021	2.177	1.560
Fe	0.000	11.301	13.443
Co	0.000	0.015	0.009
Ni	0.000	0.104	0.125
Zn	0.007	0.076	0.059
As	0.038	0.053	0.103
Κ	0.047	21.623	33.768
Ca	0.044	1004.494	1192.150
Mg	0.042	127.811	150.669
$\frac{1}{All Areas} n (nu)$	umber of sites)	67	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-11: Summary of non-parametric t-tests among soil **profile** weighted**means** (all horizons averaged and weighted based on thickness) between"Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-11a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total N	0.025	0.010	0.007
Total C	0.011	6.363	7.396
Inorganic C	0.012	6.233	7.304
CaCO ₃	0.012	51.938	60.865
Р	0.008	0.625	0.080
Fe	0.000	10.666	13.487
Ni	0.002	0.093	0.119
K	0.031	17.318	26.123
Ca	0.001	675.493	1006.592
Coyote Springs n	(number of sites)	20	10

Table 3-11b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
Total C	0.000	1.924	5.736	
Inorganic C	0.000	1.676	5.451	
CaCO ₃	0.000	13.968	45.427	
Р	0.026	0.950	0.455	
Fe	0.016	7.013	9.935	
Mg	0.037	56.310	83.909	
CEC	0.003	5.277	3.724	
Gold Butte n (n	number of sites)	28	9	

Table 3-11c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
pH 1:1	0.010	8.486	8.096	
pH CaCl ₂	0.013	8.434	8.057	
В	0.019	0.677	0.165	
Со	0.019	0.009	0.007	
Bitter Spring n (1	number of sites)	19	11	

Table 3-11d: Summary of All Study Areas combined.					
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median		
Total N	0.013	0.012	0.009		
Total C	0.001	3.505	5.747		
Inorganic C	0.002	3.310	5.544		
CaCO ₃	0.002	27.585	46.202		
Р	0.000	0.798	0.292		
Fe	0.000	9.334	11.730		
Со	0.002	0.009	0.007		
Ni	0.000	0.078	0.108		
К	0.025	16.363	26.123		
Ca	0.013	824.776	980.019		
Mg	0.042	101.485	129.393		
All Areas n (number of sites)		67	30		

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-12: Summary of non-parametric t-tests among mean A horizon valuesbetween "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-12a: Summary for Coyote Springs sites only.					
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median		
Total C	0.001	5.754	7.459		
Inorganic C	0.001	5.690	7.093		
CaCO ₃	0.001	47.417	59.106		
Р	0.002	2.988	0.251		
Fe	0.005	7.477	13.369		
Со	0.035	0.011	0.006		
Ni	0.001	0.042	0.118		
Cu	0.005	0.090	0.073		
Ca	0.001	228.569	927.972		
Mg	0.005	109.284	168.101		
Coyote Springs n ((number of sites)	19	10		

Table 3-12b: Summary for Gold Butte sites only.					
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median		
Total C	0.000	1.759	4.444		
Inorganic C	0.001	1.444	4.043		
CaCO ₃	0.001	12.036	33.693		
Mn	0.010	2.766	1.033		
Fe	0.006	6.646	9.183		
Со	0.005	0.016	0.008		
Ni	0.002	0.050	0.096		
As	0.015	0.027	0.076		
Ca	0.005	546.157	1203.729		
CEC	0.018	7.930	5.243		
Clay	0.015	5.828	7.775		
Silt	0.012	32.210	39.432		
Sand	0.008	62.921	53.383		
Gold Butte n (number of sites)		28	8		

Table 3-12c: Summary for Bitter Spring sites only.					
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median		
Inorganic C	0.050	2.961	4.233		
CaCO ₃	0.050	24.672	35.273		
NO ₃ ⁻	0.019	2.180	0.600		
Bitter Spring n (number of sites)		19	11		

(Table 3-12d is located on the next page)
Table 3-12d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	3.222	5.595
Inorganic C	0.000	2.969	5.505
CaCO ₃	0.000	24.743	45.873
Р	0.000	2.084	0.622
Mn	0.003	2.007	1.210
Fe	0.000	7.262	12.333
Со	0.000	0.014	0.008
Ni	0.000	0.049	0.109
Cu	0.021	0.096	0.082
Zn	0.024	0.069	0.051
Ca	0.000	425.375	1014.972
Mg	0.024	56.515	74.547
All Areas n (nu	mber of sites)	66	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-13: Summary of non-parametric t-tests among mean B horizon valuesbetween "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-13a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
pH Sat Paste	0.026	7.576	7.785
Total N	0.008	0.011	0.006
Total C	0.006	6.448	7.763
Inorganic C	0.004	6.370	7.699
CaCO ₃	0.004	53.080	64.160
Р	0.022	0.403	0.067
Fe	0.001	10.915	13.337
Ni	0.002	0.100	0.119
Ca	0.003	772.164	986.685
Mg	0.035	160.575	211.099
Coyote Springs n	(number of sites)	20	10

Table 3-13b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.008	2.327	4.849
Inorganic C	0.009	1.936	4.553
CaCO ₃	0.009	16.131	37.940
CEC	0.009	5.042	3.442
Silt	0.044	28.871	32.443
Gold Butte n (n	umber of sites)	22	8

Table 3-13c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Moisture	0.045	5.497	7.562
pH 1:1	0.007	8.376	8.003
pH CaCl ₂	0.010	8.293	7.990
SO_4^{2-}	0.045	1751.430	4029.210
В	0.003	0.271	0.110
Со	0.038	0.008	0.007
Na	0.032	45.172	36.337
Bitter Spring n (1	number of sites)	15	7

Table 3-13d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Moisture	0.032	3.108	6.130
pH1:1	0.041	8.489	8.258
Total N	0.008	0.012	0.009
Total C	0.017	4.285	5.782
Inorganic C	0.016	4.170	5.484
CaCO ₃	0.016	34.746	45.697
Cl-	0.006	8.047	3.320
Р	0.003	0.620	0.145
Fe	0.002	10.183	12.589
Ni	0.002	0.092	0.114
All Areas n (nu	mber of sites)	57	25

- Only variables flagged as statistically significant (p < 0.05) are shown.

- **Bold** median values indicate the larger value between BW and Non-BW. Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F **Table 3-14:** Summary of non-parametric t-tests among mean C horizon valuesbetween "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-14a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) Non-BW: 2 BW: 0				

Fable 3-14b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.001	1.151	6.341
Inorganic C	0.002	1.040	6.191
CaCO ₃	0.002	8.667	51.594
SO_4^{2-}	0.039	2893.720	4915.030
Р	0.008	0.851	0.070
Fe	0.010	6.364	10.597
К	0.045	6.439	14.169
Mg	0.039	39.503	117.888
Clay	0.045	3.686	6.518
Gold Butte n (n	umber of sites)	15	8

Table 3-14c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.016	2.038	3.620
Inorganic C	0.022	1.908	3.062
CaCO ₃	0.022	15.897	25.515
В	0.005	2.215	0.178
Мо	0.022	5.660	1.610
Ni	0.047	0.067	0.104
Ca	0.041	549.122	1038.613
Bitter Spring n (1	number of sites)	13	10

Table 3-14d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	1.415	4.161
Inorganic C	0.000	1.364	3.854
CaCO ₃	0.000	11.370	32.114
Р	0.001	0.715	0.225
Fe	0.005	7.978	11.114
Ni	0.004	0.069	0.105
Ca	0.027	712.418	989.053
All Areas n (nu	umber of sites)	30	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-15: Summary of non-parametric t-tests among minimum A horizonvalues between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-15a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.001	5.754	7.459
Inorganic C	0.001	5.690	7.093
CaCO ₃	0.001	47.417	59.106
Р	0.002	2.988	0.251
Fe	0.005	7.477	13.369
Со	0.035	0.011	0.006
Ni	0.001	0.042	0.118
Cu	0.005	0.090	0.073
Ca	0.001	228.569	927.972
Mg	0.005	109.284	168.101
Coyote Springs n	(number of sites)	19	10

Table 3-15b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	1.759	4.444
Inorganic C	0.001	1.444	4.043
CaCO ₃	0.001	12.036	33.693
Mn	0.013	2.510	1.033
Fe	0.005	6.382	9.183
Со	0.006	0.016	0.008
Ni	0.002	0.050	0.096
As	0.015	0.027	0.076
Ca	0.005	546.157	1203.729
CEC	0.025	7.930	5.243
Clay	0.015	5.828	7.775
Silt	0.012	32.210	39.432
Sand	0.009	61.522	53.383
Gold Butte n (ni	umber of sites)	28	8

Table 3-15c: Summary for Bitter Spring sites only.				
Significant Variable p-value (2-tailed) Non-BW Median BW Median				
Inorganic C	0.050	2.961	4.233	
CaCO ₃	0.050	24.672	35.273	
NO_3^-	0.019	2.180	0.600	
Bitter Spring n (1	number of sites)	19	11	

(Table 3-15d is located on the next page.)

Table 3-15d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	3.222	5.595
Inorganic C	0.000	2.969	5.505
CaCO ₃	0.000	24.743	45.873
Р	0.000	1.968	0.622
Mn	0.004	1.919	1.210
Fe	0.000	7.262	12.333
Со	0.000	0.014	0.008
Ni	0.000	0.049	0.109
Cu	0.025	0.093	0.082
Zn	0.024	0.069	0.051
Ca	0.000	425.375	1014.972
Mg	0.024	56.515	74.547
All Areas n (nu	mber of sites)	66	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-16: Summary of non-parametric t-tests among maximum A horizonvalues between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-16a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.001	5.754	7.459
Inorganic C	0.001	5.690	7.093
CaCO ₃	0.001	47.417	59.106
Р	0.002	2.988	0.251
Fe	0.005	7.477	13.369
Со	0.035	0.011	0.006
Ni	0.001	0.042	0.118
Cu	0.005	0.090	0.073
Ca	0.001	228.569	927.972
Mg	0.005	109.284	168.101
Coyote Springs n	(number of sites)	19	10

Table 3-16b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	1.910	4.444
Inorganic C	0.001	1.444	4.043
CaCO ₃	0.001	12.036	33.693
Mn	0.010	2.766	1.033
Fe	0.007	6.646	9.183
Со	0.004	0.017	0.008
Ni	0.002	0.050	0.096
As	0.017	0.027	0.076
Ca	0.005	547.008	1203.729
CEC	0.013	8.060	5.243
Clay	0.015	5.828	7.775
Silt	0.015	32.459	39.432
Sand	0.008	62.921	53.383
Gold Butte n (n	umber of sites)	28	8

Table 3-16c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
Inorganic C	0.050	2.961	4.233	
CaCO ₃	0.050	24.672	35.273	
NO ₃	0.019	2.180	0.600	
Bitter Spring n (1	number of sites)	19	11	

(Table 3-16d is located on the next page.)

Table 3-16d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
pH CaCl ₂	0.046	7.923	7.870
Total C	0.000	3.222	5.595
Inorganic C	0.000	2.969	5.505
CaCO ₃	0.000	24.743	45.873
Р	0.000	2.084	0.622
Mn	0.003	2.007	1.210
Fe	0.000	7.339	12.333
Со	0.000	0.014	0.008
Ni	0.000	0.049	0.109
Cu	0.020	0.096	0.082
Zn	0.024	0.069	0.051
Ca	0.000	425.375	1014.972
Mg	0.025	56.515	74.547
All Areas n (nu	mber of sites)	66	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-17: Summary of non-parametric t-tests among minimum B horizonvalues between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-17a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total N	0.003	0.007	0.002
Total C	0.009	6.212	6.956
Inorganic C	0.005	6.078	6.861
CaCO ₃	0.005	50.646	57.175
Fe	0.001	9.732	12.245
Ni	0.008	0.085	0.107
K	0.031	13.740	20.652
Ca	0.003	660.497	887.754
Mg	0.016	139.996	180.488
Coyote Springs n	(number of sites)	20	10

Table 3-17b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Moisture	0.017	2.451	5.255
Total N	0.039	0.008	0.005
Total C	0.010	3.485	5.584
Inorganic C	0.009	3.466	5.176
CaCO ₃	0.009	28.884	43.135
Р	0.029	0.228	0.101
Fe	0.000	8.325	11.732
Ni	0.001	0.079	0.106
Ca	0.028	788.796	954.806
Gold Butte n (ni	umber of sites)	22	8

Table 3-17c: Summary for Bitter Spring sites only.				
Significant Variable p-value (2-tailed) Non-BW Median BW Median				
Moisture	0.026	3.582	7.562	
Inorganic C	0.805	3.230	3.281	
CaCO ₃	0.805	26.919	27.340	
SO4	0.026	625.740	3233.800	
Bitter Spring n (number of sites)	15	7	

Table 3-17d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Moisture	0.026	3.582	7.562
Inorganic C	0.805	3.230	3.281
CaCO ₃	0.805	26.919	27.340
SO_4	0.026	625.740	3233.800
All Areas n (nu	mber of sites)	57	25

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-18: Summary of non-parametric t-tests among maximum B horizon
values between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-18a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Moisture	0.043	2.563	3.771
pH CaCl ₂	0.045	8.077	8.183
pH Sat Paste	0.019	7.743	7.890
Total C	0.028	6.806	8.142
Inorganic C	0.020	6.714	8.007
CaCO ₃	0.020	55.947	66.722
В	0.035	0.061	0.139
Fe	0.002	12.049	14.168
Ni	0.005	0.108	0.125
As	0.022	0.029	0.051
K	0.048	21.302	28.944
Ca	0.008	842.476	1110.482
Mg	0.039	176.497	230.641
Coyote Springs n	(number of sites)	20	10

Table 3-18b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.019	2.522	5.278
Inorganic C	0.018	2.278	5.130
CaCO ₃	0.018	18.986	42.749
CEC	0.010	5.042	4.156
Sand	0.017	68.261	61.993
Gold Butte n (n	umber of sites)	22	8

Table 3-18c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
pH1:1	0.005	8.568	8.012	
pH CaCl ₂	0.008	8.506	7.991	
Cl-	0.044	6.580	3.200	
В	0.002	0.335	0.110	
Co	0.034	0.009	0.007	
Na	0.015	47.758	36.337	
Bitter Spring n (1	number of sites)	15	7	

Table 3-18d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
pH1:1	0.027	8.682	8.266	
Total N	0.021	0.014	0.011	
Total C	0.046	4.301	5.850	
Inorganic C	0.033	4.258	5.749	
CaCO ₃	0.033	35.483	47.909	
Cl-	0.006	10.300	4.580	
Р	0.002	0.704	0.210	
Fe	0.008	11.664	13.130	
Ni	0.012	0.105	0.124	
All Areas n (nu	mber of sites)	57	25	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-19: Summary of non-parametric t-tests among minimum C horizonvalues between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-19a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) Non-BW: 2 BW: 0				

Table 3-19b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
Total C	0.001	1.151	6.256	
Inorganic C	0.002	1.040	6.027	
CaCO ₃	0.002	8.667	50.225	
Cl	0.039	18.100	80.940	
SO_4	0.028	2893.720	4915.030	
Р	0.003	0.796	0.067	
Fe	0.024	6.364	10.248	
CEC	0.020	4.507	3.207	
Gold Butte n (ni	umber of sites)	15	8	

Table 3-19c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
pH 1:1	0.012	8.505	8.136
pH CaCl ₂	0.012	8.480	8.083
ECeSP	0.041	4.838	2.954
Total C	0.006	1.255	3.620
Inorganic C	0.008	1.192	3.062
CaCO ₃	0.008	9.930	25.515
В	0.007	2.504	0.178
Р	0.025	0.495	0.285
Мо	0.021	6.900	1.190
Ni	0.048	0.057	0.097
Ca	0.035	451.488	1003.410
Bitter Spring n (r	number of sites)	12	10

Table 3-19d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.000	1.223	4.161
Inorganic C	0.000	1.099	3.854
CaCO ₃	0.000	9.158	32.114
Р	0.000	0.697	0.210
Fe	0.004	6.695	10.716
Со	0.050	0.008	0.007
Ni	0.005	0.069	0.099
Ca	0.030	702.849	989.053
All Areas n (nu	umber of sites)	29	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-20: Summary of non-parametric t-tests among maximum C horizonvalues between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-20a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) Non-BW: 2 BW: 0				

Table 3-20b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median
Total C	0.001	1.151	6.34
Inorganic C	0.002	1.040	6.208
CaCO ₃	0.002	8.667	51.73
Р	0.008	0.851	0.074
Fe	0.010	6.364	10.74
K	0.039	6.719	15.59
Mg	0.033	48.336	117.888
CEC	0.028	4.507	3.219
Gold Butte n (n	number of sites)	15	8

Table 3-20c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
Total C	0.030	2.411	3.620	
Inorganic C	0.047	2.329	3.062	
CaCO ₃	0.047	19.407	25.515	
В	0.005	2.215	0.202	
Мо	0.026	6.900	1.800	
Ni	0.035	0.073	0.115	
Bitter Spring n (1	number of sites)	13	10	

Table 3-20d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	Non-BW Median	BW Median	
Total C	0.000	1.415	4.161	
Inorganic C	0.000	1.364	3.959	
CaCO ₃	0.000	11.370	32.991	
Р	0.002	0.784	0.240	
Fe	0.002	7.978	11.144	
Ni	0.001	0.070	0.108	
Ca	0.012	768.815	1038.613	
All Areas n (nu	mber of sites)	30	18	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-21: Summary of non-parametric t-tests among A horizon weighted-**mean** values (all horizons averaged and wieghted by horizon thickness), between"Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-21a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.001	5.754	7.459
Inorganic C	0.001	5.690	7.093
CaCO ₃	0.001	47.417	59.106
Р	0.002	2.988	0.251
Fe	0.005	7.477	13.369
Со	0.035	0.011	0.006
Ni	0.001	0.042	0.118
Cu	0.005	0.090	0.073
Ca	0.001	228.569	927.972
Mg	0.005	109.284	168.101
Coyote Springs n	(number of sites)	19	10

Table 3-21b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.000	1.759	4.444
Inorganic C	0.001	1.444	4.043
CaCO ₃	0.001	12.036	33.693
Mn	0.010	2.664	1.033
Fe	0.006	6.533	9.183
Со	0.006	0.016	0.008
Ni	0.002	0.050	0.096
As	0.015	0.027	0.076
Ca	0.005	546.157	1203.729
CEC	0.015	7.930	5.243
Clay	0.015	5.828	7.775
Silt	0.012	32.210	39.432
Sand	0.008	62.921	53.383
Gold Butte n (ni	umber of sites)	28	8

Table 3-21c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	No BW Median	BW Median	
Inorganic C	0.050	2.961	4.233	
CaCO ₃	0.050	24.672	35.273	
NO ₃	0.019	2.180	0.600	
Bitter Spring n (1	number of sites)	19	11	

(Table 3-21d is located on the next page.)

Table 3-21d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.000	3.222	5.595
Inorganic C	0.000	2.969	5.505
CaCO ₃	0.000	24.743	45.873
Р	0.000	2.084	0.622
Mn	0.003	2.007	1.210
Fe	0.000	7.262	12.333
Со	0.000	0.014	0.008
Ni	0.000	0.049	0.109
Cu	0.023	0.096	0.082
Zn	0.024	0.069	0.051
Ca	0.000	425.375	1014.972
Mg	0.024	56.515	74.547
All Areas n (nu	mber of sites)	66	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-22: Summary of non-parametric t-tests among **B horizon weighted-mean** values (all horizons averaged and wieghted by horizon thickness), between"Buckwheat" sites and "Non-Buckwheat" Sites.

Fable 3-22a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
pH Sat Paste	0.033	7.579	7.764
Total N	0.018	0.010	0.006
Total C	0.020	6.466	7.394
Inorganic C	0.016	6.390	7.305
CaCO ₃	0.016	53.248	60.875
В	0.031	0.053	0.116
Р	0.039	0.333	0.063
Ni	0.002	0.101	0.118
As	0.035	0.026	0.036
К	0.039	17.538	26.877
Ca	0.002	768.478	994.664
Mg	0.043	164.617	205.236
Coyote Springs n	(number of sites)	20	10

Table 3-22b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	No BW Median	BW Median	
Total C	0.007	2.316	5.185	
Inorganic C	0.008	1.904	4.911	
CaCO ₃	0.008	15.870	40.928	
CEC	0.013	4.942	3.171	
Silt	0.031	27.972	32.519	
Gold Butte n (n	umber of sites)	22	8	

Table 3-22c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
pH1:1	0.007	8.340	8.005
pH CaCl ₂	0.010	8.288	7.990
В	0.003	0.259	0.110
Co	0.032	0.009	0.007
Na	0.032	45.218	36.337
Bitter Spring n ((number of sites)	15	7

Table 3-22d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total N	0.026	0.011	0.009
Total C	0.023	4.262	5.782
Inorganic C	0.018	4.140	5.557
CaCO ₃	0.018	34.504	46.309
Cl-	0.006	7.907	3.858
Р	0.003	0.564	0.146
Fe	0.003	9.879	12.670
Ni	0.005	0.097	0.112
All Areas n (nu	umber of sites)	57	25

- Only variables flagged as statistically significant (p < 0.05) are shown.

- **Bold** median values indicate the larger value between BW and Non-BW. Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F **Table 3-23:** Summary of non-parametric t-tests among C horizon weighted-**mean** values (all horizons averaged and wieghted by horizon thickness), between"Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-23a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) Non-BW: 2 BW: 0				

Fable 3-23b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.001	1.151	6.341
Inorganic C	0.002	1.040	6.208
CaCO ₃	0.002	8.667	51.735
SO_4^{2-}	0.039	2893.720	4915.030
Р	0.006	0.851	0.069
Fe	0.010	6.364	10.649
К	0.039	6.393	14.169
Mg	0.039	38.415	117.888
CEC	0.024	4.507	3.215
Clay	0.045	3.686	6.574
Gold Butte n (ni	umber of sites)	15	8

Table 3-23c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	No BW Median	BW Median	
Total C	0.013	1.943	3.620	
Inorganic C	0.018	1.833	3.062	
CaCO ₃	0.018	15.276	25.515	
В	0.006	2.215	0.178	
Mo	0.022	5.660	1.250	
Bitter Spring n (1	number of sites)	13	10	

Table 3-23d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	No BW Median	BW Median
Total C	0.000	1.415	4.161
Inorganic C	0.000	1.364	3.854
CaCO ₃	0.000	11.370	32.114
Р	0.001	0.711	0.221
Fe	0.004	7.978	11.114
Ni	0.005	0.069	0.104
Ca	0.030	712.418	989.867
All Areas n (nu	umber of sites)	30	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-24: Summary of non-parametric t-tests among soil **profile means** (allhorizons averaged) between "Habitat" sites and "Potential Habitat" Sites.

Table 3-24a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
pH Sat Paste	0.041	7.547	7.713
Total C	0.034	6.857	7.694
Inorganic C	0.027	6.703	7.553
CaCO ₃	0.027	55.859	62.940
Fe	0.006	10.866	13.497
Ni	0.009	0.100	0.114
Ca	0.014	758.288	977.149
Coyote Springs n	(number of sites)	9	10

Table 3-24b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median	
Total C	0.003	2.457	4.895	
Inorganic C	0.004	2.129	4.453	
CaCO ₃	0.004	17.740	37.112	
CEC	0.001	6.598	4.392	
Gold Butte n (n	umber of sites)	18	9	

Table 3-24c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
В	0.021	1.213	0.161
Со	0.016	0.010	0.008
Ni	0.026	0.057	0.099
Na	0.021	63.524	41.627
Ca	0.026	499.683	914.814
Mg	0.033	89.906	72.777
Bitter Spring n (n	number of sites)	7	11

Table 3-24d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total N	0.010	0.017	0.010
Total C	0.003	3.235	5.690
Inorganic C	0.003	2.971	5.559
CaCO ₃	0.003	24.757	46.329
NO ₃ ⁻	0.017	7.913	2.531
Р	0.001	0.984	0.467
Fe	0.001	9.415	11.951
Со	0.006	0.010	0.008
Ni	0.000	0.079	0.110
Cu	0.042	0.097	0.084
К	0.040	14.419	22.028
Ca	0.045	840.919	961.053
All Areas n (nu	mber of sites)	34	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-25: Summary of non-parametric t-tests among soil **profile minimum**values between "Habitat" sites and "Potential Habitat" Sites.

Table 3-25a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Total C	0.027	5.957	6.856
Inorganic C	0.009	5.757	6.625
CaCO ₃	0.009	47.979	55.209
Fe	0.027	7.823	12.245
Ni	0.027	0.061	0.105
Ca	0.022	417.600	887.754
Coyote Springs n	(number of sites)	9	10

Table 3-25b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Total C	0.005	1.894	3.584	
Inorganic C	0.005	1.537	2.978	
CaCO ₃	0.005	12.809	24.813	
Р	0.003	0.449	0.042	
Fe	0.045	5.860	8.299	
CEC	0.018	4.193	2.789	
Gold Butte n (ni	umber of sites)	18	9	

Table 3-25c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Total C	0.004	1.287	3.131
Inorganic C	0.006	1.200	2.986
CaCO ₃	0.006	10.001	24.883
В	0.033	0.158	0.081
Ni	0.008	0.033	0.083
Ca	0.008	216.516	724.933
Bitter Spring n (n	number of sites)	7	11

Table 3-25d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Total C	0.001	2.371	4.815
Inorganic C	0.001	1.979	4.629
CaCO ₃	0.001	16.494	38.572
Р	0.000	0.337	0.094
Fe	0.001	6.647	9.662
Ni	0.000	0.051	0.087
Ca	0.003	482.971	841.512
All Areas n (nu	mber of sites)	34	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-26: Summary of non-parametric t-tests among soil **profile maximum**values between "Habitat" sites and "Potential Habitat" Sites.

Table 3-26a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Fe	0.014	12.876	15.146
Coyote Springs n	(number of sites)	9	10

Table 3-26b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Total C	0.003	3.434	6.659	
Inorganic C	0.001	2.851	6.347	
CaCO ₃	0.001	23.760	52.893	
CEC	0.001	9.443	6.665	
Gold Butte n (r	number of sites)	18	9	

Table 3-26c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
pH 1:1	0.026	8.719	8.156
pH CaCl ₂	0.026	8.712	8.126
В	0.016	2.793	0.208
Со	0.006	0.015	0.010
Na	0.021	115.935	45.603
Clay	0.021	2.723	5.754
Bitter Spring n (1	number of sites)	7	11

Table 3-26d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Total N	0.050	0.029	0.018
Total C	0.005	4.030	6.578
Inorganic C	0.004	3.694	6.301
CaCO ₃	0.004	30.780	52.507
NO ₃ ⁻	0.013	20.200	4.440
Р	0.007	1.647	0.833
Mn	0.027	2.166	1.560
Fe	0.005	11.829	13.443
Со	0.001	0.015	0.009
Ni	0.002	0.105	0.125
Cu	0.019	0.129	0.105
Zn	0.004	0.078	0.059
К	0.027	21.063	33.768
All Areas n (nu	mber of sites)	34	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-27: Summary of non-parametric t-tests among soil **profile means** (allhorizons averaged and weighted based on thickness) between "Habitat" sites and"Potential Habitat" Sites.

Table 3-27a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Fe	0.006	11.377	13.487
Ni	0.014	0.101	0.119
Ca	0.022	786.061	1006.592
Coyote Springs n	(number of sites)	9	10

Table 3-27b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median	
Total C	0.003	2.602	5.736	
Inorganic C	0.002	2.300	5.451	
CaCO ₃	0.002	19.163	45.427	
CEC	0.004	5.679	3.724	
Gold Butte n (n	umber of sites)	18	9	

Table 3-27c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
В	0.026	1.712	0.165
Со	0.033	0.009	0.007
Ni	0.042	0.060	0.099
Na	0.021	62.938	40.184
Ca	0.042	574.140	981.284
Bitter Spring n (1	number of sites)	7	11

Table 3-27d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total N	0.013	0.014	0.009
Total C	0.006	3.426	5.747
Inorganic C	0.006	3.095	5.544
CaCO ₃	0.006	25.788	46.202
NO ₃ ⁻	0.036	10.607	2.546
Р	0.002	0.820	0.292
Fe	0.002	9.759	11.730
Со	0.020	0.009	0.007
Ni	0.001	0.081	0.108
К	0.022	15.963	26.123
All Areas n (nu	mber of sites)	34	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-28: Summary of non-parametric t-tests among mean A horizon valuesbetween "Habitat" sites and "Potential Habitat" Sites.

Table 3-28a: Summary for Coyote Springs sites only.				
Significant Variable	ignificant Variable p-value (2-tailed) P.Hab. Median BW Hab Mediar			
Cu	0.016	0.091	0.073	
Coyote Springs n	(number of sites)	8	10	

Table 3-28b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total C	0.004	2.419	4.444
Inorganic C	0.009	2.236	4.043
CaCO ₃	0.009	18.635	33.693
Mn	0.030	2.510	1.033
Со	0.026	0.015	0.008
Ni	0.023	0.068	0.096
Ca	0.040	595.565	1203.729
CEC	0.011	8.729	5.243
Gold Butte n (ni	umber of sites)	18	8

Table 3-28c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Со	0.033	0.013	0.008
Ni	0.033	0.049	0.104
Ca	0.033	344.108	1014.972
Clay	0.010	2.654	5.754
Bitter Spring n (1	number of sites)	7	11
Table 3-28d: Summa	ry of All Study Are	as combined.	
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total C	0.001	2.703	5.595
Inorganic C	0.002	2.506	5.505
CaCO ₃	0.002	20.882	45.873
Р	0.003	1.691	0.622
Mn	0.017	1.872	1.210
Fe	0.006	8.059	12.333
Co	0.001	0.013	0.008
Ni	0.001	0.059	0.109
Cu	0.007	0.108	0.082
Zn	0.018	0.071	0.051
Ca	0.005	553.458	1014.972
Clay	0.047	6.608	8.587
All Areas n (nu	mber of sites)	33	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-29: Summary of non-parametric t-tests among mean B horizon values

 between "Habitat" sites and "Potential Habitat" Sites.

Table 3-29a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Fe	0.003	11.344	13.337
Ni	0.007	0.101	0.119
Ca	0.027	772.727	986.685
Coyote Springs n	(number of sites)	9	10

Table 3-29b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total C	0.034	2.914	4.849
Inorganic C	0.048	2.534	4.553
CaCO ₃	0.048	21.116	37.940
Cl-	0.048	17.930	4.430
CEC	0.017	5.630	3.442
Gold Butte n (no	umber of sites)	14	8

Table 3-29c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median	
В	0.008	0.440	0.110	
Na	0.023	47.978	36.337	
Mg	0.023	96.238	53.850	
Bitter Spring n (1	number of sites)	4	7	

Table 3-29d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Total N	0.041	0.011	0.009
Total C	0.049	4.389	5.782
Cl	0.002	13.125	3.320
Р	0.011	0.679	0.145
Fe	0.012	10.513	12.589
Ni	0.004	0.096	0.114
All Areas n (nu	mber of sites)	27	25

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-30: Summary of non-parametric t-tests among mean C horizon valuesbetween "Habitat" sites and "Potential Habitat" Sites.

Table 3-30a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) P.Hab.: 0 BW Hab.: 0				

Table 3-30b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median	
Moisture	0.006	14.955	6.709	
pH 1:1	0.021	8.108	8.378	
pH CaCl ₂	0.010	8.060	8.331	
Total C	0.006	1.173	6.341	
Inorganic C	0.006	0.770	6.191	
CaCO ₃	0.006	6.420	51.594	
Р	0.036	0.716	0.070	
Fe	0.036	6.137	10.597	
Clay	0.021	3.504	6.518	
Gold Butte n (ni	umber of sites)	8	8	

Table 3-30c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
pH 1:1	0.040	8.719	8.151
pH CaCl ₂	0.040	8.712	8.110
Total C	0.032	2.038	3.620
В	0.019	2.793	0.178
Ni	0.008	0.057	0.104
Ca	0.006	522.838	1038.613
Bitter Spring n (1	number of sites)	7	10

Table 3-30d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	BW Hab Median
Moisture	0.010	11.766	7.955
Total C	0.000	1.287	4.161
Inorganic C	0.001	1.284	3.854
CaCO ₃	0.001	10.703	32.114
Р	0.013	0.522	0.225
Fe	0.019	6.649	11.114
Ni	0.003	0.067	0.105
Ca	0.021	683.216	989.053
All Areas n (nu	umber of sites)	15	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-31: Summary of non-parametric t-tests among **minimum A** horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-31a: Summary for Coyote Springs sites only.				
Significant Variable	ant Variable p-value (2-tailed) P.Hab. Median Habitat Median			
Cu	0.016	0.091	0.073	
Coyote Springs n	(number of sites)	8	10	

Table 3-31b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Total C	0.004	2.419	4.444
Inorganic C	0.009	2.236	4.043
CaCO ₃	0.009	18.635	33.693
Mn	0.046	2.250	1.033
Fe	0.046	7.339	9.183
Со	0.035	0.015	0.008
Ni	0.020	0.068	0.096
Ca	0.040	595.565	1203.729
CEC	0.017	8.729	5.243
Gold Butte n (ni	umber of sites)	18	8

Table 3-31c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Со	0.033	0.013	0.008	
Ni	0.033	0.049	0.104	
Ca	0.033	344.108	1014.972	
Clay	0.010	2.654	5.754	
Bitter Spring n (number of sites)	7	11	

Table 3-31d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Total C	0.001	2.703	5.595	
Inorganic C	0.002	2.506	5.505	
CaCO ₃	0.002	20.882	45.873	
Р	0.004	1.638	0.622	
Mn	0.023	1.826	1.210	
Fe	0.006	8.059	12.333	
Со	0.001	0.013	0.008	
Ni	0.001	0.057	0.109	
Cu	0.009	0.099	0.082	
Zn	0.018	0.071	0.051	
Ca	0.005	553.458	1014.972	
Clay	0.043	6.608	8.587	
All Areas n (nu	umber of sites)	33	29	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-32: Summary of non-parametric t-tests among maximum A horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-32a: Summary for Coyote Springs sites only.				
Significant Variable p-value (2-tailed) P.Hab. Median Habitat Mediar				
Cu	0.016	0.091	0.073	
Coyote Springs n	(number of sites)	8	10	

Table 3-32b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Total C	0.004	2.503	4.444
Inorganic C	0.009	2.236	4.043
CaCO ₃	0.009	18.635	33.693
Mn	0.030	2.510	1.033
Со	0.023	0.016	0.008
Ni	0.023	0.070	0.096
Ca	0.040	595.565	1203.729
CEC	0.006	9.091	5.243
Gold Butte n (nu	umber of sites)	18	8

Table 3-32c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Со	0.033	0.013	0.008	
Ni	0.033	0.049	0.104	
Ca	0.033	344.108	1014.972	
Clay	0.010	2.654	5.754	
Bitter Spring n (number of sites)	7	11	

Table 3-32d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Total C	0.001	2.703	5.595
Inorganic C	0.002	2.506	5.505
CaCO ₃	0.002	20.882	45.873
Р	0.003	1.691	0.622
Mn	0.017	1.872	1.210
Fe	0.008	8.059	12.333
Со	0.001	0.013	0.008
Ni	0.001	0.059	0.109
Cu	0.006	0.108	0.082
Zn	0.018	0.071	0.051
Ca	0.005	553.458	1014.972
Clay	0.049	6.608	8.587
All Areas n (nu	mber of sites)	33	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-33: Summary of non-parametric t-tests among **minimum B** horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-33a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Total C	0.041	6.220	6.956
Inorganic C	0.041	6.137	6.861
CaCO ₃	0.041	51.138	57.175
Fe	0.004	10.065	12.245
Ni	0.014	0.090	0.107
K	0.018	14.704	20.652
Ca	0.009	691.550	887.754
Coyote Springs n	(number of sites)	9	10

Table 3-33b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
pH 1:1	0.044	8.088	8.201	
pH Sat Paste	0.024	7.394	7.768	
Total C	0.034	2.371	4.127	
Inorganic C	0.032	2.038	3.723	
CaCO ₃	0.032	16.986	31.026	
Silt	0.034	27.321	32.260	
Gold Butte n (ni	umber of sites)	14	8	

Table 3-33c: Summary for Bitter Spring sites only.				
Significant Variablep-value (2-tailed)P.Hab. MedianHabitat Median				
Na	0.038	41.345	36.337	
Mg	0.023	93.220	52.784	
Bitter Spring n (number of sites)		4	7	

Table 3-33d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
pH Sat Paste	0.036	7.389	7.556	
Total C	0.018	3.368	5.584	
Inorganic C	0.016	2.851	5.176	
CaCO ₃	0.016	23.760	43.135	
Fe	0.001	8.186	11.732	
Ni	0.001	0.079	0.106	
All Areas n (nu	mber of sites)	27	25	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-34: Summary of non-parametric t-tests among maximum B horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-34a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Fe	0.022	12.631	14.168
Ni	0.027	0.110	0.125
As	0.050	0.030	0.051
Coyote Springs n	(number of sites)	9	10

Table 3-34b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Cl	0.034	20.670	4.430	
CEC	0.009	6.296	4.156	
Sand	0.048	67.218	61.993	
Gold Butte n (n	umber of sites)	18	8	

Table 3-34c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
В	0.008	0.585	0.110	
Na	0.023	54.612	36.337	
Mg	0.038	99.256	53.850	
Bitter Spring n (1	number of sites)	4	7	

Table 3-34d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Total N	0.039	0.014	0.011	
Cl	0.001	15.420	4.580	
NO ₃	0.030	7.960	2.000	
Р	0.007	0.704	0.210	
All Areas n (nu	mber of sites)	27	25	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-35: Summary of non-parametric t-tests among **minimum** C horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-35a: Summary for Coyote Springs sites only.			
Too few C horizons at Coyote Springs; statistical analysis not possible.			
Coyote Springs n (number of sites)	P.Hab.: 0	BW Hab.: 0	

Table 3-35b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Moisture	0.006	14.955	6.360	
pH 1:1	0.036	8.096	8.369	
pH CaCl ₂	0.018	8.044	8.309	
Total C	0.006	1.173	6.256	
Inorganic C	0.006	0.770	6.027	
CaCO ₃	0.006	6.420	50.225	
Cl	0.036	17.990	80.940	
SO_4^{2-}	0.036	2932.060	4915.030	
Р	0.016	0.648	0.067	
CEC	0.036	4.998	3.207	
Clay	0.021	3.504	6.361	
Gold Butte n (ni	umber of sites)	8	8	

Table 3-35c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
pH 1:1	0.015	8.719	8.136
pH CaCl ₂	0.019	8.712	8.083
Total C	0.015	1.287	3.620
Inorganic C	0.025	1.284	3.062
CaCO ₃	0.025	10.703	25.515
В	0.011	2.793	0.178
Ni	0.025	0.043	0.097
Na	0.040	115.935	40.413
Ca	0.019	372.996	1003.410
<i>Bitter Spring</i> n (r	number of sites)	7	10

Table 3-35d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Moisture	0.007	11.766	7.955
Total C	0.000	1.223	4.161
Inorganic C	0.001	1.091	3.854
CaCO ₃	0.001	9.088	32.114
Р	0.003	0.500	0.210
Fe	0.013	6.364	10.716
Ni	0.008	0.065	0.099
Ca	0.036	556.736	989.053
All Areas n (nu	mber of sites)	15	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-36: Summary of non-parametric t-tests among maximum C horizonvalues between "Habitat" sites and "Potential Habitat" Sites.

Table 3-36a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) P.Hab.: 0 BW Hab.: 0				

Table 3-36b: Summary forGold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
Moisture	0.009	14.955	6.709	
pH 1:1	0.036	8.120	8.384	
pH CaCl ₂	0.024	8.077	8.338	
Total C	0.009	1.173	6.341	
Inorganic C	0.009	0.770	6.208	
CaCO ₃	0.009	6.420	51.735	
Р	0.027	0.716	0.074	
Fe	0.036	6.137	10.745	
CEC	0.046	4.998	3.219	
Clay	0.036	3.504	6.702	
Gold Butte n (ni	umber of sites)	8	8	

Table 3-36c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median	
В	0.019	2.793	0.202	
Ni	0.008	0.057	0.115	
Ca	0.019	522.838	1038.613	
Bitter Spring n (1	number of sites)	7	10	

Table 3-36d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Habitat Median
Moisture	0.013	11.766	7.955
Total C	0.001	1.287	4.161
Inorganic C	0.001	1.284	3.959
CaCO ₃	0.001	10.703	32.991
Р	0.015	0.733	0.240
Fe	0.010	6.707	11.144
Ni	0.002	0.068	0.108
Ca	0.019	697.680	1038.613
All Areas n (nu	mber of sites)	15	8

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-37: Summary of non-parametric t-tests among A horizon weighted-**mean** values (all horizons averaged and wieghted by horizon thickness), between"Habitat" sites and "Potential Habitat" Sites.

Table 3-37a: Summary for Coyote Springs sites only.			
Significant Variable p-value (2-tailed) P.Hab. Median Hab Median			
Cu	0.016	0.091	0.073
Coyote Springs n	(number of sites)	8	10

Table 3-37b: Summary forGold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Total C	0.004	2.419	4.444	
Inorganic C	0.009	2.236	4.043	
CaCO ₃	0.009	18.635	33.693	
Mn	0.030	2.510	1.033	
Со	0.035	0.015	0.008	
Ni	0.020	0.068	0.096	
Ca	0.040	595.565	1203.729	
CEC	0.008	8.729	5.243	
Gold Butte n (ni	umber of sites)	18	8	

Table 3-37c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Со	0.033	0.013	0.008	
Ni	0.033	0.049	0.104	
Ca	0.033	344.108	1014.972	
Clay	0.010	2.654	5.754	
Bitter Spring n (number of sites)	7	11	

Table 3-37d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Total C	0.001	2.703	5.595
Inorganic C	0.002	2.506	5.505
CaCO ₃	0.002	20.882	45.873
Р	0.004	1.691	0.622
Mn	0.017	1.872	1.210
Fe	0.006	8.059	12.333
Со	0.001	0.013	0.008
Ni	0.001	0.059	0.109
Cu	0.008	0.108	0.082
Zn	0.018	0.071	0.051
Ca	0.005	553.458	1014.972
Clay	0.044	6.608	8.587
All Areas n (ni	umber of sites)	33	29

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-38: Summary of non-parametric t-tests among **B horizon weighted-mean** values (all horizons averaged and wieghted by horizon thickness), between"Habitat" sites and "Potential Habitat" Sites.

Table 3-38a: Summary for Coyote Springs sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Fe	0.003	11.488	13.295	
Ni	0.006	0.102	0.118	
As	0.050	0.026	0.036	
Ca	0.022	793.147	994.664	
Coyote Springs n	(number of sites)	9	10	

Table 3-38b: Summary forGold Butte sites only.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Total C	0.029	3.019	5.185	
Inorganic C	0.034	2.740	4.911	
CaCO ₃	0.034	22.837	40.928	
CEC	0.029	5.338	3.171	
Gold Butte n (no	umber of sites)	14	8	

Table 3-38c: Summary for Bitter Spring sites only.				
Significant Variable p-value (2-tailed) P.Hab. Median Hab Mediar				
В	0.008	0.407	0.110	
Na	0.023	47.031	36.337	
Mg	0.038	96.841	53.850	
Bitter Spring n (1	number of sites)	4	7	

Table 3-38d: Summary of All Study Areas combined.				
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median	
Cl	0.002	11.793	3.858	
Р	0.012	0.568	0.146	
Fe	0.013	10.416	12.670	
Ni	0.007	0.097	0.112	
All Areas n (no	umber of sites)	27	25	

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-39: Summary of non-parametric t-tests among C horizon weighted-**mean** values (all horizons averaged and wieghted by horizon thickness), between"Habitat" sites and "Potential Habitat" Sites.

Table 3-39a: Summary for Coyote Springs sites only.				
Too few C horizons at Coyote Springs; statistical analysis not possible.				
Coyote Springs n (number of sites) P.Hab.: 0 BW Hab.: 0				

Table 3-39b: Summary forGold Butte sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Moisture	0.009	14.955	6.709
pH 1:1	0.016	8.106	8.382
pH CaCl ₂	0.010	8.058	8.338
Total C	0.006	1.173	6.341
Inorganic C	0.006	0.770	6.208
CaCO ₃	0.006	6.420	51.735
Р	0.021	0.711	0.069
Fe	0.036	6.137	10.649
CEC	0.046	4.998	3.215
Clay	0.021	3.504	6.574
Gold Butte n (n	umber of sites)	8	8

Table 3-39c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
pH 1:1	0.040	8.719	8.151
pH CaCl ₂	0.032	8.712	8.110
Total C	0.025	1.943	3.620
Inorganic C	0.040	1.833	3.062
CaCO ₃	0.040	15.276	25.515
В	0.019	2.793	0.178
Ni	0.019	0.057	0.103
Ca	0.008	522.838	1033.443
CEC	0.040	21.487	17.449
Bitter Spring n (n	number of sites)	7	10

Table 3-39d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	P.Hab. Median	Hab Median
Moisture	0.011	11.766	7.955
Total C	0.000	1.287	4.161
Inorganic C	0.001	1.284	3.854
CaCO ₃	0.001	10.703	32.114
Р	0.009	0.567	0.221
Fe	0.015	6.649	11.114
Ni	0.005	0.065	0.104
Ca	0.023	616.544	989.867
All Areas n (nu	mber of sites)	15	18

- Only variables flagged as statistically significant (p < 0.05) are shown.

Table 3-40: Summary of non-parametric t-test for differences among soil profile**mean** values (averages of all horizons combined) between "Non-habitat" and"Potential Habitat" sites.

Table 3-40a: Data for Coyote Springs only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Total C	0.011	5.865	6.857
Inorganic C	0.011	5.715	6.703
CaCO ₃	0.011	47.628	55.859
Р	0.017	1.584	0.620
Mo (ppb)	0.030	0.540	2.935
Fe	0.006	8.861	10.866
Со	0.037	0.009	0.006
Ni	0.017	0.071	0.100
Ca	0.020	532.257	758.288
Mg	0.009	118.937	190.203
Silt	0.030	28.069	23.559
Coyote Springs n	(number of sites)	11	9

Table 3-40b: Data for Gold Butte only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.002	1.889	7.754
pH 1:1	0.014	8.640	8.102
pH CaCl ₂	0.013	8.563	8.038
ECe Sat Paste	0.002	1.203	2.261
Total N	0.019	0.014	0.022
Total C	0.035	1.300	2.457
NO ₃ ⁻	0.011	1.591	10.425
В	0.027	0.069	0.134
Fe	0.006	5.693	7.741
Ni	0.006	0.058	0.078
As	0.013	0.033	0.060
Ca	0.017	728.677	1089.333
Silt	0.002	23.364	32.990
Sand	0.003	71.127	61.503
Gold Butte n (number of sites) 10 18			
Table 3-40c: Data for Bitter Spring only.			

Table 3-40c: Data for Bitter Spring only.				
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median	
Moisture	0.022	3.224	7.528	
CEC	0.004	10.142	18.953	
Clay	0.002	6.540	1.971	
Silt	0.014	28.241	14.437	
Sand	0.007	66.473	83.887	
Bitter Spring n (r	number of sites)	12	7	

(Table 3-40d is located on the next page)

Table 3-40d: Data for all study areas combined.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.000	2.649	5.960
pH 1:1	0.002	8.617	8.216
pH CaCl ₂	0.039	8.166	8.046
ECe Sat Paste	0.002	0.670	2.202
Cl	0.046	8.430	15.634
SO_4^{2-}	0.022	558.200	2813.509
NO ₃ ⁻	0.004	2.505	7.913
All Areas n (nu	mber of sites)	33	34

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Bold median values indicate the larger value between Non-habitat and Potential Habitat

Final Report (CH3)

Table 3-41: Summary of non-parametric t-test for differences among mean Ahorizon values, between "Non-habitat" and "Potential Habitat" sites.

Table 3-41a: Data for Coyote Springs sites only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Total C	0.003	5.124	6.147
Inorganic C	0.003	5.109	6.019
CaCO ₃	0.003	42.573	50.155
Fe	0.000	6.914	11.563
Со	0.039	0.013	0.007
Ni	0.005	0.038	0.072
K	0.032	21.946	14.246
Ca	0.006	202.726	558.046
Mg	0.004	92.257	128.179
Coyote Springs n	(number of sites)	11	8

Table 3-41b: Data for Gold Butte sites only.				
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median	
Moisture	0.002	0.518	2.265	
pH 1:1	0.003	8.657	7.895	
pH CaCl ₂	0.005	8.632	7.789	
ECe Sat Paste	0.001	1.160	2.098	
Total N	0.027	0.018	0.038	
Total C	0.000	1.346	2.419	
Inorganic C	0.002	1.053	2.236	
CaCO ₃	0.002	8.772	18.635	
SO ₄ ²⁻	0.021	842.790	2602.300	
В	0.014	0.045	0.118	
Fe	0.001	4.295	7.339	
Ni	0.000	0.035	0.068	
Cu	0.019	0.102	0.126	
As	0.000	0.016	0.040	
Ca	0.003	201.298	595.565	
Clay	0.044	4.825	6.789	
Silt	0.001	24.654	35.670	
Sand	0.001	70.215	56.737	
Gold Butte n (na	umber of sites)	10	18	

Table 3-41c: Data for Bitter Spring sites only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.011	1.902	5.181
ECe Sat Paste	0.043	1.125	2.230
Clay	0.003	7.777	2.654
Silt	0.035	31.899	17.458
Sand	0.014	62.014	79.888
Bitter Spring n (i	number of sites)	12	7

(Table 3-41d is located on the next page.)

Table 3-41d: Data for all study areas combined.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.005	1.230	2.599
pH1:1	0.000	8.584	7.996
pHCaCl2	0.000	8.047	7.863
ECeSP	0.003	0.359	1.952
Fe	0.003	6.646	8.059
Ni	0.003	0.040	0.059
K	0.014	20.295	12.462
Ca	0.001	225.169	553.458
All Areas n (nu	mber of sites)	33	33

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Bold median values indicate the larger value between Non-habitat and Potential Habitat

Table 3-42: Summary of non-parametric t-test for differences among mean Bhorizon values, between "Non-habitat" and "Potential Habitat" sites.

Table 3-43a: Data for Coyote Springs sites only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Total N	0.044	0.013	0.007
Total C	0.044	6.179	6.859
Inorganic C	0.030	6.010	6.806
CaCO ₃	0.030	50.085	56.719
Mo	0.028	0.420	2.727
Mg	0.025	128.276	210.034
CEC	0.017	4.952	7.527
Clay	0.011	7.075	10.834
Silt	0.030	26.180	23.429
Coyote Springs n	(number of sites)	11	9

Table 3-42a: Data for Gold Butte sites only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.000	.718151	9.211391
pH 1:1	0.009	8.740333	8.169500
pH CaCl ₂	0.008	8.664167	8.110833
ECeSP	0.001	.650000	2.181000
Inorganic C	0.029	1.143912	2.533872
CaCO ₃	0.029	9.532600	21.115600
Cl-	0.041	5.983333	17.930000
SO_4^{2-}	0.000	273.410000	2969.703333
NO_3^-	0.046	1.165000	8.636667
Fe	0.014	6.281270	8.385520
Ni	0.020	.065360	.087930
As	0.024	.033180	.073460
Ca	0.017	864.846200	1332.364233
Mg	0.048	33.416483	81.363363
Gold Butte n (n	umber of sites)	8	14

Table 3-42c: Data for Bitter Spring sites only.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
pH Sat Paste	0.050	7.466	7.098
CEC	0.013	9.950	18.780
Clay	0.050	6.628	1.757
Bitter Spring n (i	number of sites)	11	4

Table 3-42d: Data for all study areas combined.			
Significant Variable	p-value (two-tailed)	Non-Hab. Median	Pot. Hab. Median
Moisture	0.000	2.042	6.376
pH1:1	0.003	8.670	8.275
ECeSP	0.001	0.381	2.137
Cl-	0.042	5.300	13.125
SO_4^{2-}	0.003	164.045	2714.000
NO ₃ ⁻	0.023	1.200	4.533
All Areas n (number of sites)		30	27

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Bold median values indicate the larger value between Non-habitat and Potential Habitat
Table 3-43: Summary of non-parametric t-test for differences among mean Chorizon values, between "Non-habitat" and "Potential Habitat" sites.

Table 3-43a: Summary for Coyote Springs sites only.					
Too few C horizons at Coyote Springs; statistical analysis not possible.					
Coyote Springs n (number of sites) Non-BW: 2 BW: 0					

Table 3-43b: Summary for Gold Butte sites only.						
Moisture	0.037242545	6.516	14.955			
Total N	0.037242545	0.010	0.019			
Gold Butte n (number of sites)		7	8			

Table 3-43c: Data for Bitter Spring sites only.							
Significant Variable p-value (two-tailed) Non-Hab. Median Pot. Hab. Med							
CEC	0.004274734	7.766	21.671				
Bitter Spring n (1	umber of sites)	6	7				

Table 3-43d: Data for all study areas combined.						
Significant Variable p-value (two-tailed) Non-Hab. Median Pot. Hab. Media						
Moisture	0.036202791	6.979	11.766			
CEC	0.032669594	4.423	9.237			
All Areas n (number of sites)		15	15			

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Bold median values indicate the larger value between Non-habitat and Potential Habitat

Table 3-44: Summary of independent non-parametric t-tests for differences among soil

 profile median values between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-44a: Summary of Coyote Springs data only.							
Significant Variable	p-value (2-tailed)	Non-BW Median		Non-BW Median BW Media		ledian	
Ca/Mg ratio	No significance	N	А	NA			
		Minimum	Maximum	Minimum	Maximum		
		1.35	9.83	1.64	9.90		
K/(Ca+Mg) ratio	No significance	NA		NA			
		Minimum	Maximum	Minimum	Maximum		
		0.007	0.180	0.008	0.067		
Coyote Springs n (ni	umber of values)	66		35			

Table 3-44b: Summary of Gold Butte data only.							
Significant Variable	p-value (2-tailed)	p-value (2-tailed) Non-BW Median B		BW M	Iedian		
Ca/Mg ratio	.025	22.191		14.338			
		Minimum	Maximum	Minimum	Maximum		
		1.49	118.96	.67	57.77		
K/(Ca+Mg) ratio	No significance	NA		NA			
		Minimum	Maximum	Minimum	Maximum		
		0.002	0.133	0.002	0.192		
Gold Butte n (num	Gold Butte n (number of values)		94		32		

Table 3-44c: Summary of Bitter Spring data only.							
Significant Variable	p-value (2-tailed)	Non-BW	Non-BW Median		Iedian		
Ca/Mg ratio	.029	9.443		12.007			
		Minimum	Maximum	Minimum	Maximum		
		.51	30.11	2.52	29.81		
K/(Ca+Mg) ratio	No significance	N	A	NA			
		Minimum	Maximum	Minimum	Maximum		
		0.005	1.235	0.006	1.276		
Bitter Spring n (nu	mber of values)	60		32			

Table 3-44d: Summary of All Study Areas combined.							
Significant Variable	p-value (2-tailed)	Non-BW	Non-BW Median BW Media		ledian		
Ca/Mg ratio	No significance	N.	A	NA			
-		Minimum	Maximum	Minimum	Maximum		
		.51	118.96	.67	57.77		
K/(Ca+Mg) ratio	No significance	N.	A	NA			
		Minimum	Maximum	Minimum	Maximum		
		0.002	1.235	0.002	1.276		
All Areas n (numl	ber of values)	9!	9	22	20		

Table 3-45: Summary of non-parametric independent samples t-tests for differences inA horizon median values, between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-45a: Summary of Coyote Springs data only.							
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW Median			
Ca/Mg ratio	0.002	2.4	.06	5.3083			
		Minimum	Maximum	Minimum	Maximum		
		1.35	9.25	2.87	9.90		
K/(Ca+Mg) ratio	0.006	0.0	62	0.0146			
		Minimum	Maximum	Minimum	Maximum		
		0.007	0.144	0.008	0.067		
Coyote Springs n (ni	umber of values)	19		10			

Table 3-45b: Summary of Gold Butte data only.							
Significant Variable	p-value (2-tailed)	Non-BW Median		Non-BW Median BW Med		ledian	
Ca/Mg ratio	No significance	N	А	NA			
		Minimum	Maximum	Minimum	Maximum		
		3.31	67.64	13.021	57.770		
K/(Ca+Mg) ratio	0.003	0.0	14	0.007			
		Minimum	Maximum	Minimum	Maximum		
		0.002	0.133	0.002	0.016		
Gold Butte n (num	iber of values)	29		8			

Table 3-45c: Summary of Bitter Spring data only.							
Significant Variable	p-value (2-tailed)	Non-BW Median		Non-BW Median BW Media		ledian	
Ca/Mg ratio	No significance	N	A	NA			
		Minimum	Maximum	Minimum	Maximum		
		1.51	30.11	2.52	28.40		
K/(Ca+Mg) ratio	No significance	NA		NA			
		Minimum	Maximum	Minimum	Maximum		
		0.005	0.768	0.010	0.424		
Bitter Spring n (nu	mber of values)	19		11			

Table 3-45d: Summary of All Study Areas combined.							
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW Median			
Ca/Mg ratio	No significance	N.	A	NA			
		Minimum	Maximum	Minimum	Maximum		
	ļ	1.35	67.64	2.52	57.77		
K/(Ca+Mg) ratio	.013	0.0	41	0.015			
-		Minimum	Maximum	Minimum	Maximum		
	ļ	0.002	0.768	0.002	0.424		
All Areas n (numl	ber of values)	6	7	2	9		

Table 3-46: Summary of non-parametric independent samples t-tests for differences inB horizon median values, between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-46a: Summar	ry of Coyote Sprin	i gs data only	<i>.</i>		
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW N	Iedian
Ca/Mg ratio	No significance	N	А	N	A
		Minimum	Maximum	Minimum	Maximum
		1.56	9.83	1.64	7.98
K/(Ca+Mg) ratio	No significance	N	A	N	A
		Minimum	Maximum	Minimum	Maximum
		0.008	0.180	0.010	0.050
Coyote Springs n (ni	umber of values)	4.	5	2	5

Table 3-46b: Summar	ry of Gold Butte d	ata only.			
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW N	ledian
Ca/Mg ratio	No significance	N	A	Ν	А
		Minimum	Maximum	Minimum	Maximum
		3.02	118.96	1.74	36.78
K/(Ca+Mg) ratio	No significance	N	A	N	A
		Minimum	Maximum	Minimum	Maximum
		0.002	0.045	0.002	0.069
Gold Butte n (num	iber of values)	4	8	1	3

Table 3-46c: Summar	y of Bitter Spring	data only.			
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	ledian
Ca/Mg ratio	0.032	13.0	552	19.	339
		Minimum	Maximum	Minimum	Maximum
		.81	27.39	13.73	29.81
K/(Ca+Mg) ratio	No significance	N	A	N	A
		Minimum	Maximum	Minimum	Maximum
		0.007	1.235	0.006	1.276
Bitter Spring n (nu	mber of values)	2.	5	8	}

Table 3-46d: Summar	ry of All Study Ar	eas combine	ed.		
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	ledian
Ca/Mg ratio	No significance	N.	A	N	A
		Minimum	Maximum	Minimum	Maximum
		.81	118.96	1.64	36.78
K/(Ca+Mg) ratio	No significance	N	A	N	А
		Minimum	Maximum	Minimum	Maximum
		0.002	1.235	0.002	1.276
All Areas n (numb	ber of values)	11	8	4	6

Table 3-47: Summary of non-parametric independent samples t-tests for differences in

 C horizon median values, between "Buckwheat" sites and "Non-Buckwheat" Sites.

Table 3-47a: Summar	y of Coyote Sprin	i gs data only	<i>.</i>		
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	ledian
Ca/Mg ratio					
		Minimum	Maximum	Minimum	Maximum
K/(Ca+Mg) ratio					
		Minimum	Maximum	Minimum	Maximum
Coyote Springs n (ni	umber of values)	0 (no	data)	0 (no	data)

Table 3-47b: Summar	ry of Gold Butte d	ata only.			
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	ledian
Ca/Mg ratio	0.036	19.	887	6.4	-07
		Minimum	Maximum	Minimum	Maximum
		1.49	101.95	.67	22.16
K/(Ca+Mg) ratio	No significance	N	A	N	A
		Minimum	Maximum	Minimum	Maximum
		0.003	0.020	0.004	0.192
Gold Butte n (num	iber of values)	1	7	1	1

Table 3-47c Summary	y of Bitter Spring	data only.			
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	Iedian
Ca/Mg ratio	0.044	4.5	13	9.4	183
		Minimum	Maximum	Minimum	Maximum
		.51	24.51	5.62	28.69
K/(Ca+Mg) ratio	No significance	N	A	Ν	A
		Minimum	Maximum	Minimum	Maximum
		0.009	0.775	0.028	0.505
Bitter Spring n (nu	mber of values)	1	6	1	3

Table 3-47d: Summar	ry of All Study Ar	eas combine	ed.		
Significant Variable	p-value (2-tailed)	Non-BW	Median	BW M	ledian
Ca/Mg ratio	No significance	N.	A	N	A
		Minimum	Maximum	Minimum	Maximum
		.51	101.95	.67	28.69
K/(Ca+Mg) ratio	No significance	N.	A	N	A
		Minimum	Maximum	Minimum	Maximum
	ļ	0.003	0.775	0.004	0.505
All Areas n (num)	ber of values)	3.	5	2.	4

ļ	μ'	
	Noj	
	and	
	W) :	
	B	
	ites	
	eat s	
	whe	
	uck	
	n B	
	wee	
	bet	
	'ses	
	naly	
	iil a	
	n sc	
	lts o	
	esu.	
	ant r	
	ifica	
	ign	
	lly s	
	tica	
	tatis	
	in si	
	spu	
	tre	
	y of	
	mar	
	Jum	tes.
	8: 2	at si
	3-4	whe
	able	Jck
	Ľ	Bı

T.LI. 7 10.	Г		and and and a					
I able 5-488	I: Summary IO	r Coyote Sprit	igs sites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH Sat Paste	Greater in BW	NA	NA	NA	Greater in BW	Greater in BW		-
Total C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	-	-
Inorganic C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW		-
CaCO ₃	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW		
Ca	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW		-
Mg	Greater in BW	NA	Greater in BW	Greater in BW	Greater in BW	Greater in BW	-	1
Fe	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA		-
Ni	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW		
K	NA	Greater in BW	NA	NA	ΝΑ	Greater in BW		
B	NA	NA	NA	NA	ΝA	Greater in BW	-	-
As	NA	NA	NA	NA	ΝA	Greater in BW		
Ρ	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW		
C0	NA	NA	Lower in BW	Lower in BW	ΝΑ	ΝA		
Cu	NA	NA	Lower in BW	Lower in BW	NA	NA	-	1
Total N	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW		
Ca/Mg ratio	NA	-	Greater in BW	-	ΝΑ	-	I	I
K/Ca+Mg	NA	1	Lower in BW	-	NA	-	-	1
$NA = no \ signif$	icant differences	detected $(p > 0.05)$	5)					

 $r_{r} = r_{0}$ significant any concess detected $(p \neq 0.02)$ --- = insufficient **n** for statistical analysis; and/or no data available Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text)

Table 3-48b	: Summary for	r Gold Butte si	ites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
Total C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Inorganic C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
CaCO ₃	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Ca	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
Mg	Greater in BW	Greater in BW	NA	NA	NA	NA	Greater in BW	Greater in BW
Fe	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Ni	Greater in BW	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
K	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
As	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
SO_4	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
Ρ	Lower in BW	Lower in BW	NA	NA	NA	NA	Lower in BW	Lower in BW
Co	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
\mathbf{Mn}	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
CEC	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	NA	Lower in BW
Clay	NA	NA	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Silt	NA	NA	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA
Sand	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Ca/Mg ratio	Lower in BW	I	NA	-	NA	1	Lower in BW	-
K/Ca+Mg	NA	I	Lower in BW	I	NA	I	NA	I
$NA = no \ signif$	icant differences (detected $(p > 0.05$	(1					

--- = insufficient **n** for statistical analysis; and/or no data available

Statistics on calculated Ca/Mg and K(Ca+Mg) ratios were analyzed separately as raw data values (see text)

Table 3-48c	: Summary for	Bitter Spring	sites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH (1:1)	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	NA	NA
pH (CaCl ₂)	Lower in BW	Lower in BW	NA	Na	Lower in BW	Lower in BW	NA	NA
Total C	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
Inorganic C	NA	NA	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
CaCO ₃	NA	NA	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Ca	NA	NA	NA	NA	NA	NA	Greater in BW	NA
Ni	NA	NA	NA	NA	NA	NA	Greater in BW	NA
B	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	Lower in BW	Lower in BW
Mo	NA	NA	NA	NA	NA	NA	Lower in BW	Lower in BW
Co	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	NA	NA
Na	NA	NA	NA	NA	Lower in BW	Lower in BW	NA	NA
SO_4	NA	NA	NA	NA	Greater in BW	NA	NA	NA
Moisture	NA	NA	NA	NA	Greater in BW	NA	NA	NA
NO_3	Lower in BW	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Ca/Mg ratio	Greater in BW	I	NA	I	Greater in BW	I	Greater in BW	I
K/Ca+Mg	NA	ı	NA	ı	NA	I	NA	I
$NA = no \ signif$	ficant differences o	detected $(p > 0.02)$	5)					

--- = insufficient **n** for statistical analysis; and/or no data available

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text)

Table 3-48d	l: Summary fo	r All Study Ar	eas Combined	l.				
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH (1:1)	NA	NA	ΝA	ΝΑ	Lower in BW	ΝA	NA	NA
Total C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Inorganic C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
CaCO ₃	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Ca	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Mg	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	NA	NA
Fe	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Zi	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
K	NA	Greater in BW	NA	NA	NA	NA	NA	NA
Ρ	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW
Co	Lower in BW	Lower in BW	Lower in BW	Lower in BW	NA	NA	NA	NA
Mn	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Cu	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Zn	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Moisture	NA	NA	NA	NA	Greater in BW	NA	NA	NA
CI	NA	NA	NA	NA	Lower in BW	Lower in BW	NA	NA
Total N	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	NA	NA
Ca/Mg ratio	NA	I	NA	I	NA	I	NA	I
K/Ca+Mg	NA	ı	Lower in BW	I	NA	-	NA	-
$NA = no \ signif.$	icant differences	detected ($p > 0.05$	2)					

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) --- = insufficient n for statistical analysis; and/or no data available

ersus	
W) V(
itat (B	
t Hab	
cwhea	
Bucl	
tweer	
ses be	
analy	
n soil	
sults c	
ant res	
gnific	
ally si	
atistic	
s in sta	
trends	
ary of	
umm	itat.
-49: S	l Hab
uble 3	tentia
Ë	\mathbf{Po}

Table 3-49a	: Summary for	r Coyote Sprin	igs sites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH Sat Paste	Greater in BW	NA	NA	NA	Na	NA		
Total C	Greater in BW	NA	NA	NA	NA	NA		-
Inorganic C	Greater in BW	NA	NA	NA	NA	NA		-
CaCO ₃	Greater in BW	NA	NA	NA	NA	NA		
Ca	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW		
Fe	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW		
Ni	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW		
\mathbf{As}	NA	NA	NA	NA	NA	Greater in BW		
Cu	NA	NA	Lower in BW	Lower in BW	NA	NA		
Ca/Mg ratio	NA	I	NA	-	NA	ı	ı	ı
K/Ca+Mg	NA	I	NA		NA	ı	ı	ı
NA = no signif	ficant differences	detected $(p > 0.05)$	() ()					

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) --- = insufficient **n** for statistical analysis; and/or no data available

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

Table 3-49t	: Summary for	r Gold Butte s	ites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH (1:1)	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
pH (CaCl ₂)	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
Total C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Inorganic C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
CaCO ₃	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Ca	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
Fe	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
ïŻ	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
Р	NA	NA	NA	NA	NA	NA	Lower in BW	Lower in BW
Co	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Mn	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
CEC	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	NA	Lower in BW
Moisture	NA	NA	NA	NA	NA	NA	Lower in BW	Lower in BW
CI	NA	NA	NA	NA	Lower in BW	NA	NA	NA
Clay	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
Ca/Mg ratio	Lower in BW	-	NA	-	NA	ı	NA	I
K/Ca+Mg	NA	-	Lower in BW	-	NA		NA	-
$NA = no \ signif$	ficant differences .	detected $(p > 0.0)$	5)					

	Acto
> 0.05)	and/ou no
detected (p	I an abreio.
differences	fou statiction
no significant	t at the issues of
IA = I	;

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) --- = insufficient n for statistical analysis; and/or no data available

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

Table 3-49c	:: Summary for	r Bitter Spring	sites only.					
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH (1:1)	NA	NA	NA	NA	NA	NA	Lower in BW	Lower in BW
pH (CaCl ₂)	NA	NA	NA	Na	NA	NA	Lower in BW	Lower in BW
Total C	NA	NA	NA	NA	NA	NA	Greater in BW	Greater in BW
Inorganic C	NA	NA	NA	NA	NA	NA	NA	Greater in BW
CaCO ₃	NA	NA	NA	NA	NA	NA	NA	Greater in BW
Ca	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Mg	Lower in BW	NA	NA	NA	Lower in BW	Lower in BW	NA	NA
Ni	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
B	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	Lower in BW	Lower in BW
Co	Lower in BW	Lower in BW	Lower in BW	Lower in BW	NA	NA	NA	NA
Na	Lower in BW	Lower in BW	NA	NA	Lower in BW	Lower in BW	NA	NA
CEC	NA	NA	NA	NA	NA	NA	NA	Lower in BW
Clay	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
Ca/Mg ratio	Greater in BW	ı	Greater in BW	I	Greater in BW	I	Greater in BW	I
K/Ca+Mg	Lower in BW	-	NA	-	NA	I	Lower in BW	-
$NA = no \ signif$	ficant differences .	detected $(p > 0.02)$	5)					

	dollar
	data
> 0.05)	and/or no
detected (p	I analysis.
differences	for statistica
significant	fficiant n
ou =	- inc.
NA	

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) \dots = insufficient **n** for statistical analysis; and/or no data available

September, 2011

Table 3-490	I: Summary for	r All Study Ar	eas Combined	l.				
Significant Variable	Whole Profile Means	Whole Profile Weighted means	A Horizon Means	A Horizon Weighted Means	B Horizon Means	B Horizon Weighted Means	C Horizon Means	C Horizon Weighted Means
pH (1:1)	NA	NA	NA	NA	NA	NA	NA	NA
Total C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	Greater in BW	Greater in BW
Inorganic C	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
CaCO ₃	Greater in BW	Greater in BW	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Ca	Greater in BW	NA	Greater in BW	Greater in BW	NA	NA	Greater in BW	Greater in BW
Fe	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
Zi	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW	Greater in BW
K	Greater in BW	Greater in BW	NA	NA	NA	NA	NA	NA
Ρ	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW	Lower in BW
Co	Lower in BW	Lower in BW	Lower in BW	Lower in BW	NA	NA	NA	NA
Mn	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Cu	Lower in BW	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Zn	NA	NA	Lower in BW	Lower in BW	NA	NA	NA	NA
Moisture	NA	NA	NA	NA	NA	NA	Lower in BW	Lower in BW
CI	NA	NA	NA	NA	Lower in BW	Lower in BW	NA	NA
NO ₃	Lower in BW	Lower in BW	NA	NA	NA	NA	NA	NA
Total N	Lower in BW	Lower in BW	NA	NA	Lower in BW	NA	NA	NA
Clay	NA	NA	Greater in BW	Greater in BW	NA	NA	NA	NA
Ca/Mg ratio	NA	1	NA	-	NA	ı	NA	I
K/Ca+Mg	NA	-	NA	-	NA		NA	-
$NA = no \ signif$	icant differences	detected (p > 0.0)	2)					

--- = insufficient **n** for statistical analysis; and/or no data available

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text)

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

ween Potential	
analyses be	
lts on soil a	
ficant resul	
ically signi	Ś
ds in statist	Habitat site
ary of trene	rsus Non-F
50: Summ	PHAB) ve
Table 3-	Habitat (

Table 3-50a:	Summary for Coyote S	prings sites only.		
Significant Variable	Whole Profile Means	A Horizon Means	B Horizon Means	C Horizon Means
Total C	Greater in PHAB	Greater in PHAB	Greater in PHAB	
Inorganic C	Greater in PHAB	Greater in PHAB	Greater in PHAB	
CaCO ₃	Greater in PHAB	Greater in PHAB	Greater in PHAB	
Ca	Greater in PHAB	Greater in PHAB	NA	
Mg	Greater in PHAB	Greater in PHAB	Greater in PHAB	
Fe	Greater in PHAB	Greater in PHAB	NA	
Ni	Greater in PHAB	Greater in PHAB	NA	
K	VN	Lower in PHAB	NA	
Mo	Greater in PHAB	NA	Greater in PHAB	
Ρ	Lower in PHAB	NA	NA	-
C0	Lower in PHAB	Lower in PHAB	NA	
Total N	NA	NA	Lower in PHAB	
CEC	VN	NA	Greater in PHAB	
Clay	ΝΑ	NA	Greater in PHAB	
Silt	Lower in PHAB	NA	Lower in PHAB	
Ca/Mg ratio	ΥN	NA	Lower in PHAB	
K/Ca+Mg	NA	Lower in PHAB	NA	
NA = no significo	ant differences detected (p	> 0.05)		

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) --- = insufficient **n** for statistical analysis; and/or no data available

Table 3-50b:	Summary for Gold Bu	tte sites only.		
Significant Variable	Whole Profile Means	A Horizon Means	B Horizon Means	C Horizon Means
pH (1:1)	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
pH (CaCl ₂)	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
Total C	Greater in PHAB	Greater in PHAB	NA	NA
Inorganic C	NA	Greater in PHAB	Greater in PHAB	NA
CaCO ₃	ΥN	Greater in PHAB	Greater in PHAB	NA
Ca	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
Mg	NA	NA	Greater in PHAB	NA
Fe	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
Ni	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
B	Greater in PHAB	Greater in PHAB	NA	NA
As	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
Cu	NA	Greater in PHAB	NA	NA
S04	NA	Greater in PHAB	Greater in PHAB	NA
Moisture	Greater in PHAB	Greater in PHAB	Greater in PHAB	Greater in PHAB
EC	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
CI	NA	NA	Greater in PHAB	NA
NO3	Greater in PHAB	NA	Greater in PHAB	NA
Total N	Greater in PHAB	Greater in PHAB	NA	Greater in PHAB
Clay	ΥN	Greater in PHAB	NA	NA
Silt	Greater in PHAB	Greater in PHAB	NA	NA
Sand	Lower in PHAB	Lower in PHAB	NA	NA
Ca/Mg ratio	ΥN	Greater in PHAB	NA	NA
K/Ca+Mg	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
NA = no significo	ant differences detected (p	> 0.05)		

--- = insufficient **n** for statistical analysis; and/or no data available

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text)

Gypsum Soils Analysis Technical Conditions 2005-UNLV-609F

Gypsum Soils Analysis	Technical	Conditions
2005-UNLV-609F		

Table 3-50c:	Summary for Bitter S]	oring sites only.		
Significant Variable	Whole Profile Means	A Horizon Means	B Horizon Means	C Horizon Means
pH (sat. paste)	VN	NA	Lower in PHAB	NA
CEC	Greater in PHAB	NA	Greater in PHAB	Greater in PHAB
Moisture	Greater in PHAB	Greater in PHAB	NA	NA
EC	NA	Greater in PHAB	NA	NA
Clay	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
Silt	Lower in PHAB	Lower in PHAB	NA	NA
Sand	Greater in PHAB	Greater in PHAB	NA	NA
Ca/Mg ratio	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
K/Ca+Mg	Greater in PHAB	NA	NA	Greater in PHAB
Table 3-50d:	Summary for All Stud	y Areas Combined.		
Significant Variable	Whole Profile Means	A Horizon Means	B Horizon Means	C Horizon Means
pH (1:1)	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA
pH (CaCl ₂)	Lower in PHAB	Lower in PHAB	NA	NA
Ca	NA	Greater in PHAB	NA	NA
Fe	NA	Greater in PHAB	NA	NA
Ni	NA	Greater in PHAB	NA	NA
Κ	NA	Lower in PHAB	NA	NA
CEC	NA	NA	NA	Greater in PHAB
SO_4	Greater in PHAB	NA	Greater in PHAB	NA
Moisture	Greater in PHAB	Greater in PHAB	Greater in PHAB	Greater in PHAB
CI	Greater in PHAB	NA	Greater in PHAB	NA
NO ₃	Greater in PHAB	NA	Greater in PHAB	NA
EC	Greater in PHAB	Greater in PHAB	Greater in PHAB	NA
Ca/Mg ratio	ΥN	NA	NA	NA
K/Ca+Mg	Lower in PHAB	Lower in PHAB	Lower in PHAB	NA

 $NA = no \ significant \ differences \ detected \ (p > 0.05)$

Statistics on calculated Ca/Mg and K (Ca+Mg) ratios were analyzed separately as raw data values (see text) --- = insufficient n for statistical analysis; and/or no data available

Table 3-51: Spearman's Rho All Habitats, Coyote Springs, WholeSoil Profile Mean

Table 3-51a: Summary for All Habitats, Coyote Springs, Whole

 Soil Profile Mean: Correlation to CaCO₃

		5	
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.996	.000
Р	Strong Negative	717	.000
Ca	Strong Positive	.661	.000
Fe	Strong Positive	.640	.000
Mg	Strong Positive	.638	.000
Ni	Strong Positive	.619	.000
Со	Strong Negative	559	.001
pH (sat. paste)	Strong Positive	.545	.002
Silt	Strong Negative	518	.003
Clay	Strong Positive	.453	.012
Total N	Moderate Negative	376	.041
Organic C	Moderate Positive	.361	.050

Table 3-52b: Summary for All Habitats, Coyote Springs, WholeSoil Profile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ca	Very Strong Positive	.972	.000
Ni	Very Strong Positive	.970	.000
Р	Strong Negative	861	.000
Total C	Strong Positive	.652	.000
Inorganic C	Strong Positive	.640	.000
CaCO ₃	Strong Positive	.640	.000
Со	Strong Negative	522	.003
Silt	Strong Negative	480	.007
Мо	Strong Positive	.471	.009
Moisture	Strong Positive	.464	.010
Total N	Moderate Negative	448	.013
Mg	Moderate Positive	.446	.013
SO ₄	Moderate Positive	.417	.022
K	Moderate Positive	.415	.022
EC	Moderate Positive	.412	.024
Mn	Moderate Negative	364	.048

Table 3-52: Spearman's Rho Buckwheat Habitat, Coyote Springs,Whole Soil Profile Mean

Table 3-52a: Summary for Buckwheat Habitat, Coyote Springs,Whole Soil Profile Mean: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.952	.000
Р	Strong Negative	891	.001

Table 3-52b: Summary for Buckwheat Habitat, Coyote Springs,Whole Soil Profile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Strong Positive	.842	.002
Ca	Strong Positive	.842	.002
Cl	Strong Positive	.782	.008
SO ₄	Strong Positive	.770	.009
Mg	Strong Negative	697	.025
Mn	Strong Positive	.648	.043
pH (CaCl ₂)	Strong Negative	636	.048

Table 3-53: Spearman's Rho Non-Habitat, Coyote Springs, WholeSoil Profile Mean

Table 3-53: Summary for Non-Habitat, Coyote Springs, WholeSoil Profile Mean: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.991	.000
SO ₄	Strong Negative	682	.021
Sand	Strong Positive	.682	.021

Table 3-53b: Summary for Non-Habitat, Coyote Springs, WholeSoil Profile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ca	Very Strong Positive	.964	.000	
Ni	Very Strong Positive	.955	.000	
As	Strong Positive	.773	.005	
NO ₃	Strong Positive	.764	.006	
Со	Strong Negative	743	.009	
Р	Strong Negative	718	.013	
Mg	Strong Positive	.682	.021	
Mn	Strong Negative	664	.026	
CEC	Strong Positive	.664	.026	

Table 3-54: Spearman's Rho Potential Habitat, Coyote Springs,Whole Soil Profile Mean

Table 3-54a: Summary for Potential Habitat, Coyote Springs, Whole Soil Profile Mean: Correlation to CaCO₃

		5	
Significant	Correlation to CaCO	Correlation	P-value
Variable		coefficient	I -value
Total C	Very Strong Positive	1.000	
Organic C	Very Strong Positive	.933	.000
рН (1:1)	Very Strong Negative	917	.001
Ca	Strong Positive	.733	.025

Table 3-54b: Summary for Potential Habitat, Coyote Springs,Whole Soil Profile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Very Strong Positive	.962	.000
Ca	Very Strong Positive	.917	.001
Р	Strong Negative	850	.004
Со	Strong Negative	733	.025

Profile Mean			
Table 3-55a: Summary for All Habitats, Gold Butte, Whole Soil			
Profile Mean: Correlation to CaCO ₃			
Significant	Correlation to CoCO	Correlation	D voluo
Variable	Correlation to CaCO3	coefficient	r-value
Total C	Very Strong Positive	.984	.000
Clay	Strong Positive	.794	.000
Ni	Strong Positive	.714	.000
Mg	Strong Positive	.703	.000
Ca	Strong Positive	.676	.000
Fe	Strong Positive	.674	.000
Cl	Strong Positive	.564	.000
Sand	Strong Negative	562	.000
EC	Strong Positive	.544	.000
SO ₄	Strong Positive	.540	.001
Со	Strong Negative	530	.001
Р	Strong Negative	472	.003
Zn	Moderate Negative	448	.005
Mn	Moderate Negative	447	.005
Мо	Moderate Positive	.418	.010
Silt	Moderate Positive	.414	.011
NO ₃	Moderate Positive	.391	.017
As	Moderate Positive	.366	.026
CEC	Moderate Negative	363	.027

 Table 3-55:
 Spearman's Rho All Habitats, Gold Butte, Whole Soil

Table 3-55b: Summary for All Habitats Gold Butte, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.931	.000	
Ca	Strong Positive	.684	.000	
Total C	Strong Positive	.683	.000	
Inorganic C	Strong Positive	.674	.000	
CaCO ₃	Strong Positive	.674	.000	
As	Strong Positive	.552	.000	
Mg	Strong Positive	.523	.001	
Р	Strong Negative	508	.001	
В	Strong Positive	.501	.002	
Na	Moderate Positive	.441	.006	
Мо	Moderate Positive	.422	.009	
Clay	Moderate Positive	.398	.015	
EC	Moderate Positive	.384	.019	
Cu	Moderate Positive	.348	.035	

Table 3-56: Spearman's Rho Ha	bitat, Gold Butte, Profile Mean
-------------------------------	---------------------------------

Table 3-56a: Summary for Buckwheat Habitat, Gold Butte, Whole Soil Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.983	.000
Moisture	Very Strong Negative	933	.000
pH (CaCl ₂)	Strong Positive	.850	.004
Ca	Strong Positive	.767	.016
CEC	Strong Negative	750	.020

Table 3-56b: Summary for Buckwheat Habitat, Gold Butte, WholeSoil Profile Mean: Correlation to Fe

NO CORRELATIONS

Table 3-57: Spearman's Rho Non-Habitat, Gold Butte, Whole SoilProfile Mean

Table 3-57a: Summary for Non-Habitat, Gold Butte, Whole Soil Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Р	Very Strong Negative	952	.000	
Total C	Strong Positive	.879	.001	
Clay	Strong Positive	.830	.003	
Mg	Strong Positive	.770	.009	
Sand	Strong Negative	770	.009	
Со	Strong Negative	681	.030	
Mn	Strong Negative	648	.043	

Table 3-57b: Summary for Non-Habitat, Gold Butte, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Very Strong Positive	.952	.000
Cu	Strong Positive	.818	.004
В	Strong Positive	.758	.011
Zn	Strong Positive	.661	.038

Table 3-58: Spearman's Rho	Potential	Habitat,	Gold	Butte,	Whole
Soil Profile Mean					

Table 3-58a: Summary for Potential Habitat, Gold Butte, Whole

 Soil Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.981	.000	
Clay	Very Strong Positive	.911	.000	
pH (CaCl ₂)	Strong Positive	.897	.000	
Mg	Strong Positive	.781	.000	
рН (1:1)	Strong Positive	.749	.000	
Organic C	Strong Negative	734	.001	
Moisture	Strong Negative	713	.001	
Fe	Strong Positive	.701	.001	
Ni	Strong Positive	.697	.001	
Ca	Strong Positive	.643	.004	
Na	Strong Positive	.637	.004	
Cl	Strong Positive	.606	.008	
K	Strong Positive	.560	.016	
Sand	Strong Negative	513	.030	
Мо	Strong Positive	.494	.037	
Zn	Strong Negative	484	.042	

Table 3-58b: Summary for Potential Habitat, Gold Butte, Whole

 Soil Profile Mean: Correlation to Fe

Son Frome Mean. Conclution to re				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.920	.000	
Ca	Strong Positive	.761	.000	
Total N	Strong Negative	754	.000	
pH (CaCl ₂)	Strong Positive	.723	.001	
Inorganic C	Strong Positive	.701	.001	
CaCO ₃	Strong Positive	.701	.001	
Na	Strong Positive	.668	.002	
Clay	Strong Positive	.649	.004	
Total C	Strong Positive	.643	.004	
pH (1:1)	Strong Positive	.641	.004	
Organic C	Strong Negative	641	.004	
Mg	Strong Positive	.624	.006	
EC	Strong Positive	.548	.019	
Moisture	Strong Negative	519	.027	
K	Strong Positive	.476	.046	

Table 3-59: Spearman's Rho All Habitats, Bitter Spring, WholeSoil Profile Mean

Table 3-59a: Summary for All Habitats, Bitter Spring, Whole Soil Profile Mean: Correlation to CaCO₃

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.994	.000
EC	Strong Negative	575	.001
Mn	Strong Negative	570	.001
В	Strong Negative	555	.001
Со	Strong Negative	461	.010
Р	Moderate Negative	448	.013
SO ₄	Moderate Negative	412	.024
Moisture	Moderate Negative	362	.049

Table 3-59b: Summary for All Habitats, Bitter Spring, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value	
Ni	Very Strong Positive	.901	.000	
Ca	Strong Positive	.885	.000	
Р	Strong Negative	695	.000	
рН (1:1)	Moderate Negative	404	.027	
SO ₄	Moderate Positive	.393	.032	
pH (CaCl ₂)	Moderate Negative	389	.034	

Table 3-60: Spearman's Rho Buckwheat Habitat, Bitter Spring,Whole Soil Profile Mean

Table 3-60a: Summary for Buckwheat Habitat, Bitter Spring, Whole Soil Profile Mean: Correlation to CaCO₃

Significant	Correlation to CoCO	Correlation	D voluo
Variable		coefficient	P-value
Total C	Very Strong Positive	.973	.000
EC	Strong Negative	655	.029
Mg	Strong Positive	.618	.043
Silt	Strong Negative	618	.043

Table 3-60b: Summary for Buckwheat Habitat, Bitter Spring,

 Whole Soil Profile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.955	.000	
Clay	Strong Positive	.891	.000	
Zn	Strong Positive	.836	.001	
Ca	Strong Positive	.827	.002	
Sand	Strong Negative	791	.004	
SO ₄	Strong Positive	.709	.015	
Mn	Strong Positive	.673	.023	

Table 3-61: Spearman's Rho Non-Habitat, Bitter Spring, WholeSoil Profile Mean

Table 3-61a: Summary for Non-Habitat, Bitter Spring, Whole Soil Profile Mean: Correlation to CaCO₃

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	
В	Strong Negative	804	.002
EC	Strong Negative	727	.007
Cu	Strong Negative	727	.007
Zn	Strong Negative	664	.018
SO ₄	Strong Negative	615	.033
Мо	Strong Negative	608	.036
Mn	Strong Negative	608	.036
As	Strong Negative	601	.039

Table 3-61b: Summary for Non-Habitat, Bitter Spring, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ca	Very Strong Positive	.923	.000	
Ni	Strong Positive	.895	.000	
Р	Strong Negative	776	.003	
Mn	Strong Negative	622	.031	
pH (sat. paste)	Strong Negative	580	.048	

Table 3-62: Spearman's Rho Potential Habitat, Bitter Spring,Whole Soil Profile Mean

Table 3-62a: Summary for Potential Habitat, Bitter Spring, Whole

 Soil Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	
Р	Strong Negative	893	.007
Co	Strong Negative	786	.036

Table 3-62b: Su	mmary for Potential H	labitat, Bitter S	pring, Whole	
Soil Profile Mean: Correlation to Fe				
Significant	Correlation to CaCO. Correlation P-value			
Variable	correlation to caco3	coefficient	I -value	
Ni	Strong Positive	.857	.014	

.857

.014

Strong Positive

Ca

Table 3-63: Spearman's Rho All Sites, All Habitats, Whole Soil						
Profile Mean						
Table 3-63a: Su	mmary for All Sites, A	Il Habitats, W	hole Soil			
Profile Mean: C	orrelation to CaCO ₂	,				
Significant Variable	Significant Variable Correlation to CaCO ₃ Correlation coefficient P-value					
Total C	Very Strong Positive	.997	.000			
Mg	Strong Positive	.684	.000			
Clay	Strong Positive	.661	.000			
Co	Strong Negative	618	.000			
Fe	Strong Positive	.557	.000			
Moisture	Strong Negative	514	.000			
Mn	Strong Negative	497	.000			
SO ₄	Strong Negative	493	.000			
Ni	Strong Positive	.488	.000			
Р	Strong Negative	466	.000			
рН (1:1)	Strong Positive	.458	.000			
EC	Moderate Negative	442	.000			
Zn	Moderate Negative	439	.000			
Total N	Moderate Negative	428	.000			
Cu	Moderate Negative	420	.000			
As	Moderate Negative	390	.000			
В	Weak Negative	293	.004			
Organic C	Weak Negative	223	.028			
K	Weak Positive	.218	.032			
Ca	Weak Positive	.209	.040			
Cl	Weak Negative	205	.044			

Table 3-63a: Summary for All Sites, All Habitats, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.906	.000
Р	Strong Negative	718	.000
Ca	Strong Positive	.637	.000
Inorganic C	Strong Positive	.557	.000
CaCO ₃	Strong Positive	.557	.000
Total C	Strong Positive	.553	.000
Total N	Strong Negative	498	.000
Mg	Strong Positive	.491	.000
Со	Strong Negative	450	.000
K	Moderate Positive	.423	.000
Clay	Moderate Positive	.356	.000
Мо	Moderate Positive	.350	.000
Na	Moderate Positive	.310	.002
Mn	Weak Negative	251	.013
Silt	Weak Negative	226	.026
Organic C	Weak Negative	220	.031

Table 3-64: Spearman's Rho	All Sites,	Buckwheat Habitat,	Whole
Soil Profile Mean			

Table 3-64a: Summary for All Sites, Buckwheat Habitat, Whole

 Soil Profile Mean: Correlation to CaCO3

5			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.995	.000
Moisture	Strong Negative	814	.000
pH (1:1)	Strong Positive	.785	.000
EC	Strong Negative	680	.000
As	Strong Negative	657	.000
SO ₄	Strong Negative	637	.000
Clay	Strong Positive	.616	.000
P	Strong Negative	604	.000
pH (sat. paste)	Strong Positive	.591	.001
Mg	Strong Positive	.551	.002
Total N	Strong Negative	487	.006
Ni	Strong Positive	.472	.008
Mn	Moderate Negative	416	.022
В	Moderate Negative	403	.027
CEC	Moderate Negative	394	.031
Co	Moderate Negative	390	.033
Fe	Moderate Positive	.383	.037
Ca	Moderate Positive	.372	.043
Zn	Moderate Negative	361	.050

Table 3-64b : Summary for All Sites, Buckwheat Habitat, Whole			
Soil Profile Mear	n: Correlation to Fe		
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.817	.000
Total N	Strong Negative	491	.006
Ca	Strong Positive	.487	.006
Р	Strong Negative	484	.007
Mg	Moderate Positive	.420	.021
Clay	Moderate Positive	.418	.022
Mn	Moderate Positive	.406	.026
Total C	Moderate Positive	.383	.037
Inorganic C	Moderate Positive	.383	.037
CaCO ₃	Moderate Positive	.383	.037

Table 3-65: Spearman's Rho All Sites, Non-Habitat, Whole SoilProfile Mean

Table 3-65a: Summary for All Sites, Non-Habitat, Whole Soil

 Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.991	.000
Clay	Strong Positive	.619	.000
Mg	Strong Positive	.600	.000
SO4	Strong Negative	577	.000
EC	Strong Negative	545	.001
Zn	Strong Negative	490	.004
Cu	Strong Negative	452	.008
Со	Moderate Negative	443	.010
pH (CaCl ₂)	Moderate Negative	392	.024
Sand	Moderate Negative	387	.026
Mn	Moderate Negative	369	.034
Fe	Moderate Positive	.364	.037

Table3-65b: Summary for All Sites, Non-Habitat, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.943	.000
Ca	Strong Positive	.729	.000
Р	Strong Negative	637	.000
К	Strong Positive	.570	.001
Mn	Strong Negative	568	.001
Na	Strong Positive	.544	.001
Со	Strong Negative	510	.002
В	Strong Positive	.504	.003
As	Strong Positive	.473	.005
pH (sat. paste)	Moderate Negative	431	.012
CEC	Moderate Positive	.394	.023
pH (1:1)	Moderate Negative	372	.033
Total C	Moderate Positive	.367	.036
Inorganic C	Moderate Positive	.364	.037
CaCO ₃	Moderate Positive	.364	.037
Mg	Moderate Positive	.351	.045

Table 3-66: Spearman's Rho All Sites, Potential Habitat, WholeSoil Profile Mean

Table 3-66a: Summary for All Sites, Potential Habitat, Whole Soil Profile Profile Mean: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.994	.000
Moisture	Strong Negative	827	.000
Mg	Strong Positive	.810	.000
pH (1:1)	Strong Positive	.733	.000
Fe	Strong Positive	.733	.000
Clay	Strong Positive	.724	.000
Со	Strong Negative	674	.000
Ni	Strong Positive	.633	.000
Total N	Strong Negative	592	.000
Mn	Strong Negative	560	.001
Organic C	Strong Negative	511	.002
K	Strong Positive	.466	.005
Cu	Strong Negative	465	.006
SO ₄	Moderate Negative	447	.008
Zn	Moderate Negative	447	.008
Р	Moderate Negative	444	.009
As	Moderate Negative	440	.009
В	Moderate Negative	365	.034
EC	Moderate Negative	339	.050

Table 3-66b: Summary for All Sites, Potential Habitat, Whole SoilProfile Mean: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.812	.000
Inorganic C	Strong Positive	.733	.000
CaCO ₃	Strong Positive	.733	.000
Total C	Strong Positive	.714	.000
Total N	Strong Negative	701	.000
Moisture	Strong Negative	593	.000
Р	Strong Negative	583	.000
Mg	Strong Positive	.582	.000
pH (1:1)	Strong Positive	.533	.001
Organic C	Strong Negative	468	.005
K	Strong Positive	.467	.005
Clay	Moderate Positive	.440	.009
Со	Moderate Negative	421	.013
Ca	Moderate Positive	.410	.016
Мо	Moderate Positive	.406	.017
pH (CaCl ₂)	Moderate Positive	.381	.026
Na	Moderate Positive	.381	.026
Silt	Moderate Negative	370	.031

Table 3-67: Spearman's Rho All Habitats, Coyote Springs, A

 horizon

Table 3-67a: Summary for All Habitats, Coyote Springs, A

 horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.975	.000
Ni	Strong Positive	.850	.000
Ca	Strong Positive	.803	.000
Fe	Strong Positive	.779	.000
Р	Strong Negative	748	.000
Mg	Strong Positive	.724	.000
Silt	Strong Negative	591	.001
Sand	Strong Positive	.521	.004
Thickness	Strong Negative	519	.004
Mn	Strong Negative	518	.004
K	Strong Negative	482	.008
Со	Strong Negative	452	.014
pH (CaCl ₂)	Moderate Negative	444	.016
Cu	Moderate Negative	441	.017
Organic C	Moderate Positive	.403	.030

Table 3-67b: Summary for All Habitats, Coyote Springs, AHorizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Strong Positive	.841	.000
Ca	Strong Positive	.841	.000
Mg	Strong Positive	.802	.000
Total C	Strong Positive	.796	.000
Inorganic C	Strong Positive	.779	.000
CaCO ₃	Strong Positive	.779	.000
Thickness	Strong Negative	758	.000
Р	Strong Negative	702	.000
Silt	Strong Negative	638	.000
Со	Strong Negative	511	.005
Mn	Strong Negative	489	.007
Cl	Strong Positive	.471	.010
pH (CaCl ₂)	Moderate Negative	426	.021
Sand	Moderate Positive	.391	.036
Organic C	Moderate Positive	.389	.037

 Table 3-68: Spearman's Rho Habitat, Coyote Springs, A horizon

Table 3-68a: Summary for Habitat, Coyote Springs, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
As	Strong Negative	770	.009
Total C	Strong Positive	.745	.013
Silt	Strong Negative	721	.019
Ni	Strong Positive	.709	.022
Thickness	Strong Negative	661	.037
Sand	Strong Positive	.661	.038
Cl	Strong Positive	.648	.043

Table 3-68b : Summary for Habitat, Coyote Springs, A Horizon:			
Correlation to Fe			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ca	Very Strong Positive	.939	.000
Ni	Very Strong Positive	.915	.000
Na	Strong Positive	.855	.002
Zn	Strong Positive	.794	.006
Cl	Strong Positive	.709	.022
Total C	Strong Positive	.661	.038

Table 3-69: Spearman's Rho Non-Habitat, Coyote Springs, A

 horizon

Table 3-69a: Summary for Non-Habitat, Coyote Springs, Ahorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.991	.000
Clay	Strong Negative	791	.004
SO ₄	Strong Negative	773	.005
pH (sat. paste)	Strong Positive	.700	.016
Total N	Strong Positive	.664	.026
Sand	Strong Positive	.636	.035

Table 3-69b : Summary for Non-Habitat, Coyote Springs, A			
Horizon: Correlation to Fe			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Na	Strong Positive	.682	.021
Cl	Strong Positive	.655	.029
Silt	Strong Negative	636	.035

Table 3-70: Spearman's Rho Potential Habitat, Coyote Springs, A

 horizon

Table 3-70a: Summary for Potential Habitat, Coyote Springs, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.976	.000
Ca	Strong Positive	.857	.007
Ni	Strong Positive	.833	.010
Organic C	Strong Positive	.762	.028

Table 3-70b: Summary for Potential Habitat, Coyote Springs, AHorizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Silt	Strong Negative	786	.021
Р	Strong Negative	762	.028
Ca	Strong Positive	.738	.037
Organic C	Strong Positive	.714	.047
Table 3-71: Spearman's Rho All Chemistry, Gold Butte, A horizon

Table 3-71a: Summary for All Chemistry, Gold Butte, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.978	.000
Clay	Strong Positive	.838	.000
Sand	Strong Negative	829	.000
Ni	Strong Positive	.755	.000
Silt	Strong Positive	.754	.000
Ca	Strong Positive	.746	.000
As	Strong Positive	.731	.000
Fe	Strong Positive	.712	.000
Zn	Strong Negative	592	.000
Mg	Strong Positive	.583	.000
Со	Strong Negative	560	.000
Mn	Strong Negative	554	.000
SO ₄	Moderate Positive	.417	.010

Table 3-71b: Summary for All Chemistry, Gold Butte, A Horizon:

 Correlation to Fe

Correlation to Fe			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Very Strong Positive	.927	.000
Ca	Strong Positive	.772	.000
As	Strong Positive	.752	.000
Total C	Strong Positive	.720	.000
Inorganic C	Strong Positive	.712	.000
CaCO ₃	Strong Positive	.712	.000
Mg	Strong Positive	.522	.001
Со	Strong Negative	518	.001
Sand	Strong Negative	498	.002
Clay	Strong Positive	.471	.003
EC	Strong Positive	.462	.004
Silt	Strong Positive	.450	.005
Mn	Moderate Negative	413	.011
SO ₄	Moderate Positive	.407	.012
Moisture	Moderate Positive	.382	.020
Р	Moderate Negative	380	.020

Table 3-72: S	pearman's Rho	Habitat,	Gold Butte,	A horizon
----------------------	---------------	----------	-------------	-----------

Table 3-72a: Summary for Habitat, Gold Butte, A horizon: Correlation to $CaCO_3$

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.976	.000
CEC	Strong Negative	833	.010
pH (CaCl ₂)	Strong Positive	.810	.015
Moisture	Strong Negative	762	.028
pH (sat. paste)	Strong Positive	.762	.028

Table 3-72a: Summary for Habitat, Gold Butte, A Horizon:				
Correlation to Fe				
Ni	Very Strong Positive	.952	.000	
Mg	Very Strong Positive	.905	.002	
As	Strong Positive	.881	.004	
Мо	Strong Positive	.786	.021	

 Table 3-73:
 Spearman's Rho Non-Habitat, Gold Butte, A horizon

Table 3-73a: Summary for Non-Habitat, Gold Butte, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.964	.000
Mn	Strong Negative	818	.004
Со	Strong Negative	745	.013
NO ₃	Strong Positive	.738	.015
Clay	Strong Positive	.733	.016
Moisture	Strong Positive	.685	.029
Мо	Strong Negative	673	.033

Table 3-73b : Summary for Non-Habitat, Gold Butte, A Horizon:					
Correlation to Fe	Correlation to Fe				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value		
Na	Strong Positive	.794	.006		
В	Strong Positive	.782	.008		
Ni	Strong Positive	.770	.009		
Cu	Strong Positive	.733	.016		

Table 3-74: Spearman's Rho Potential Habitat, Gold Butte, A

 horizon

Table 3-74a: Summary for Potential Habitat, Gold Butte, Ahorizon: Correlation to CaCO3

Significant	Correlation to CaCO.	Correlation	D voluo
Variable		coefficient	P-value
Total C	Very Strong Positive	.963	.000
Clay	Strong Positive	.857	.000
Zn	Strong Negative	849	.000
Organic C	Strong Negative	768	.000
Sand	Strong Negative	760	.000
Mg	Strong Positive	.683	.001
pH (CaCl ₂)	Strong Positive	.642	.003
Moisture	Strong Negative	620	.005
В	Strong Negative	613	.005
Silt	Strong Positive	.610	.006
Ca	Strong Positive	.575	.010
Mn	Strong Negative	573	.010
рН (1:1)	Strong Positive	.565	.012
Ni	Strong Positive	.550	.015
As	Strong Positive	.527	.020
Fe	Strong Positive	.518	.023
pH (sat. paste)	Strong Positive	.488	.034

Table 3-74b : Summary for Potential Habitat, Gold Butte, A				
Horizon: Correla	tion to Fe			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.902	.000	
Co	Strong Negative	586	.008	
Р	Strong Negative	584	.009	
Ca	Strong Positive	.584	.009	
Mg	Strong Positive	.523	.022	
Inorganic C	Strong Positive	.518	.023	
CaCO ₃	Strong Positive	.518	.023	
Zn	Strong Negative	516	.024	
Total C	Strong Positive	.482	.036	
As	Strong Positive	.472	.041	

 Table 3-75: Spearman's Rho All Habitats, Bitter Spring, A horizon

Table 3-75a: Summary for All Habitats, Bitter Spring, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.994	.000
Mn	Strong Negative	579	.001
K	Strong Negative	550	.002
Na	Strong Negative	514	.004
Со	Strong Negative	502	.005
В	Strong Negative	466	.009
EC	Moderate Negative	415	.023
Cl	Moderate Negative	379	.039

Table 3-75b: Summary for All Habitats, Bitter Spring, A Horizon:Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ca	Strong Positive	.893	.000
Ni	Strong Positive	.859	.000
Р	Strong Negative	645	.000
рН (1:1)	Strong Negative	599	.000
As	Strong Positive	.586	.001
pH (CaCl ₂)	Strong Negative	538	.002
Со	Strong Negative	513	.004
SO ₄	Moderate Positive	.415	.023
K	Moderate Negative	381	.038

Table 3-76: Spearman's Rho Buckwheat Habitat, Bitter Spring, A

 horizon

Table 3-76a: Summary for Buckwheat Habitat, Bitter Spring, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1	.000
EC	Strong Negative	691	.019
K	Strong Negative	618	.043

Table 3-76b: Summary for Buckwheat Habitat, Bitter Spring, A Horizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ca	Very Strong Positive	.964	.000
Ni	Very Strong Positive	.927	.000
As	Strong Positive	.800	.003
pH (1:1)	Strong Negative	700	.016
Mg	Strong Negative	664	.026

 Table 3-77: Spearman's Rho Non-Habitat, Bitter Spring, A
 horizon

Very Strong Positive

Table 3-77a: Summary for Non-Habitat, Bitter Spring, A horizon:
 Correlation to CaCO₃ Correlation Significant **Correlation to CaCO₃ P-value** coefficient Variable Total C .000

.982

Table 3-77b: Summary for Non-Habitat, Bitter Spring, A Horizon:			
Correlation to Fe			
Ni	Very Strong Positive	.991	.000
Ca	Very Strong Positive	.991	.000
As	Strong Positive	.745	.008
Р	Strong Negative	736	.010
pH (sat. paste)	Strong Negative	736	.010
pH (CaCl ₂)	Strong Negative	718	.013
pH (1:1)	Strong Negative	645	.032
EC	Strong Positive	.645	.032
Mn	Strong Negative	609	.047

Table 3-78: Spearman's Rho Potential Habitat, Bitter Spring, A

 horizon

Table 3-78a: Summary for Potential Habitat, Bitter Spring, Ahorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	.000
Mn	Strong Negative	738	.037

Table 3-78b : Summary for Potential Habitat, Bitter Spring, A			
Horizon: Correlation to Fe			
Total N	Very Strong Negative	905	.002
Silt	Strong Negative	833	.010
Sand	Strong Positive	.833	.010
pH (1:1)	Strong Negative	810	.015
SO ₄	Strong Positive	.714	.047

Table 3-79: Spearman's Rho All Sites, All Habitats, A h	orizon
---	--------

Table 3-79a: Summary for All Sites, All Habs, A horizon: Correlation to CaCO₂

euce3			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.995	.000
Mg	Strong Positive	.734	.000
Со	Strong Negative	614	.000
Clay	Strong Positive	.605	.000
Mn	Strong Negative	547	.000
Fe	Strong Positive	.536	.000
EC	Strong Negative	504	.000
SO ₄	Strong Negative	503	.000
В	Moderate Negative	441	.000
Zn	Moderate Negative	414	.000
Ni	Moderate Positive	.401	.000
Cu	Moderate Negative	360	.000
Total N	Moderate Negative	343	.001
Р	Moderate Negative	326	.001
NO3	Weak Positive	.295	.004
pH (1:1)	Weak Positive	.290	.004
Ca	Weak Positive	.279	.006
Cl	Weak Negative	277	.006
pH (sat. paste)	Weak Positive	.270	.008
CEC	Weak Negative	251	.014
Silt	Weak Negative	225	.028
Organic C	Weak Negative	205	.045

Table 3-79b: Summary for All Sites, All Habs, A horizon: Correlation to Fe

	· · · · · · · · · · · · · · · · · · ·		
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.842	.000
Ca	Strong Positive	.725	.000
Р	Strong Negative	639	.000
Со	Strong Negative	610	.000
Inorganic C	Strong Positive	.536	.000
CaCO ₃	Strong Positive	.536	.000
Total C	Strong Positive	.531	.000
Mn	Strong Negative	503	.000
Mg	Strong Positive	.466	.000
Zn	Moderate Negative	331	.001
Thickness	Weak Negative	283	.005
Clay	Weak Positive	.278	.006
As	Weak Positive	.269	.008
Cu	Weak Negative	257	.012
pH (CaCl ₂)	Weak Negative	255	.012
Мо	Weak Positive	.251	.014
Total N	Weak Negative	250	.014
Na	Weak Positive	.241	.018
pH (1:1)	Weak Negative	208	.042

Table 3-80: Spearman's Rho	All Sites, Habitat, A horizo	on
----------------------------	------------------------------	----

Table 3-80a: Summary for All Sites, Habitat, A horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.982	.000
В	Strong Negative	662	.000
EC	Strong Negative	661	.000
NO ₃	Strong Positive	.656	.000
pH (1:1)	Strong Positive	.641	.000
Moisture	Strong Negative	626	.000
Mg	Strong Positive	.617	.000
SO ₄	Strong Negative	590	.001
Р	Strong Negative	577	.001
As	Strong Negative	518	.004
Clay	Strong Positive	.513	.004
CEC	Strong Negative	473	.009
Silt	Moderate Negative	449	.014
Fe	Moderate Positive	.441	.017
pH (sat. paste)	Moderate Positive	.429	.020
Thickness	Moderate Negative	406	440
Mn	Moderate Negative	385	.039
Total N	Moderate Negative	380	.042

Table 3-80b : Summary for All Sites, Habitat, A horizon: Correlation to			
Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.944	.000
Ca	Strong Positive	.684	.000
Р	Strong Negative	584	.001
Na	Strong Positive	.501	.006
Clay	Strong Positive	.454	.013
Inorganic C	Moderate Positive	.441	.017
CaCO ₃	Moderate Positive	.441	.017
Thickness	Moderate Negative	440	.017
Total C	Moderate Positive	.425	.022
Mg	Moderate Positive	.411	.027

Table 3-81: Spearman's Rho All Sites	s, Non-Habitat, A horizon
--------------------------------------	---------------------------

Table 3-81a : Summary for Al	l Sites, Non-Habitat, A horizon:
Correlation to CaCO ₂	

Significant Variable	Significant Variable		P-value	
Total C	Very Strong Positive	.996	.000	
Mg	Strong Positive	.820	.000	
Clay	Strong Positive	.662	.000	
Thickness	Strong Positive	.611	.000	
SO ₄	Strong Negative	588	.000	
EC	Strong Negative	574	.001	
NO ₃	Strong Positive	.478	.006	
pH (CaCl ₂)	Strong Negative	460	.008	
Sand	Moderate Negative	417	.018	
Moisture	Moderate Positive	.400	.023	
K	Moderate Positive	.372	.036	
Fe	Moderate Positive	.368	.038	
Со	Moderate Negative	368	.038	

Table 3-81b: Sun	nmary for All Sites, No	n-Habitat, A hori	izon:
Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.709	.000
B	Strong Positive	.540	.001
As	Strong Positive	.523	.002
Ca	Strong Positive	.504	.003
Co	Strong Negative	491	.004
Mn	Strong Negative	475	.006
K	Strong Positive	.473	.006
Na	Moderate Positive	.436	.013
pH (sat. paste)	Moderate Negative	435	.013
pH (1:1)	Moderate Negative	433	.013
Mg	Moderate Positive	.406	.021
Total C	Moderate Positive	.380	.032
Inorganic C	Moderate Positive	.368	.038
CaCO ₃	Moderate Positive	.368	.038

Table 3-82a: Summary for All Sites, Potential Habitat, A horizon:Correlation to $CaCO_3$				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.987	.000	
В	Strong Negative	710	.000	
EC	Strong Negative	682	.000	
Mn	Strong Negative	663	.000	
Со	Strong Negative	656	.000	
Mg	Strong Positive	.645	.000	
Clay	Strong Positive	.638	.000	
pH (1:1)	Strong Positive	.636	.000	
Fe	Strong Positive	.629	.000	
Moisture	Strong Negative	578	.000	
SO ₄	Strong Negative	556	.001	
Zn	Strong Negative	511	.002	
CEC	Strong Negative	453	.006	
Total N	Moderate Negative	447	.007	
Cl	Moderate Negative	447	.007	
Organic C	Moderate Negative	412	.014	
Ni	Moderate Positive	.411	.014	
pH (sat. paste)	Moderate Positive	.375	.027	

Table 3-82b: Summary for All Sites, Potential Habitat, A horizon:					
Correlation to Fe	Correlation to Fe				
Significant	Correlation to Fe	Correlation	p-value		
Variable		coefficient	P		
Inorganic C	Strong Positive	.629	.000		
CaCO ₃	Strong Positive	.629	.000		
Со	Strong Negative	627	.000		
Ni	Strong Positive	.610	.000		
Total C	Strong Positive	.604	.000		
Mg	Strong Positive	.599	.000		
Total N	Strong Negative	572	.000		
Mn	Strong Negative	525	.001		
Zn	Strong Negative	522	.001		
P	Strong Negative	506	.002		
B	Strong Negative	471	.004		
Silt	Strong Negative	464	.005		
Cu	Strong Negative	452	.006		
Мо	Moderate Positive	.403	.016		
Ca	Moderate Positive	.387	.022		
CEC	Moderate Negative	376	.026		
Organic C	Moderate Negative	351	.039		
Clay	Moderate Positive	.351	.039		

Table 3-83: Spearman's Rho All Chemistry, Coyote Springs, BHorizon

Table 3-83a: Summary for All Habitats at Coyote Springs, B Horizon: Correlation to CaCO3

Significant Variable	Significant VariableCorrelation to CaCO3Correlation coefficient		P-value
Total C	Very Strong Positive	.992	.000
Mg	Strong Positive	.563	.000
pH (sat. paste)	Strong Positive	.501	.000
Р	Strong Negative	484	.000
Silt	Moderate Negative	415	.000
Total N	Moderate Negative	398	.001
Clay	Moderate Positive	.391	.001
Со	Weak Negative	274	.022
Zn	Weak Positive	.262	.028
Ca	Weak Positive	.245	.041

Table 3-83b: Summary for All Habitats at Coyote Springs, B Horizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.968	.000	
Ca	Very Strong Positive	.934	.000	
Р	Strong Negative	599	.000	
K	Moderate Positive	.424	.000	
Moisture	Moderate Positive	.359	.002	
SO ₄	Moderate Positive	.341	.004	
B	Moderate Positive	.337	.004	
Total N	Moderate Negative	322	.007	
Мо	Moderate Positive	.313	.008	
Na	Moderate Positive	.300	.012	
EC	Weak Positive	.266	.026	
pH (1:1)	Weak Negative	252	.035	

Table 3-84:	Spearman's	Rho	Habitat,	Coyote	Springs,	В	Horizon
--------------------	------------	-----	----------	--------	----------	---	---------

Table 3-84a: Summary for Habitat, Coyote Springs, B Horizon: Correlation to CaCO₂

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.989	.000	
K	Strong Negative	535	.006	
Mn	Strong Negative	469	.018	
EC	Moderate Negative	435	.030	
Р	Moderate Negative	433	.031	
В	Moderate Negative	425	.034	
Silt	Moderate Negative	421	.036	
Cu	Moderate Positive	.409	.043	
Moisture	Moderate Negative	407	.043	

Table 3-84b: Su	mmary for Habitat, Co	oyote Springs,	B Horizon:
Correlation to Fe	2		
Significant Variable	Correlation to CaCO ₃	P-value	
Ni	Very Strong Positive	.939	.000
Ca	Strong Positive	.846	.000
Со	Strong Positive	.671	.000
Mg	Strong Negative	563	.003
Мо	Strong Positive	.467	.019
EC	Strong Positive	.463	.020
Total N	Moderate Negative	438	.029
SO ₄	Moderate Positive	.438	.029
Mn	Moderate Positive	.412	.041
Р	Moderate Negative	402	.046

Table 3-85: Spearman's Rho Non-Habitat, Coyote Springs, BHorizon

Table 3-85a: Summary for Non-Habitat, Coyote Springs, BHorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	to CaCO ₃ Correlation coefficient	
Total C	Very Strong Positive	.975	.000
Silt	Strong Negative	641	.003
Total N	Strong Negative	630	.004
Sand	Strong Positive	.577	.010
Мо	Strong Positive	.567	.011
Zn	Strong Positive	.563	.012
pH (CaCl ₂)	Strong Positive	.505	.028

Table 3-85b : Summary for Non-Habitat, Coyote Springs, B						
Horizon: Correla	Horizon: Correlation to Fe					
Significant VariableCorrelation to CaCO3Correlation coefficientP-value						
Ni	Very Strong Positive	.995	.000			
Ca	Very Strong Positive	.979	.000			
Р	Strong Negative	704	.001			
Mn	Strong Negative	565	.012			
Mg	Strong Positive	.461	.047			

Table 3-86: Spearman's Rho Potential Habitat, Coyote Springs, BHorizon

Table 3-86a: Summary for Potential Habitat, Coyote Springs, B Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.992	.000
Р	Strong Negative	580	.002
pH (sat. paste)	Strong Positive	.573	.002
Mg	Strong Positive	.525	.006
Ca	Strong Positive	.458	.019

Table 3-86b: Summary for Potential Habitat, Coyote Springs, BHorizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Very Strong Positive	.965	.000
Ca	Very Strong Positive	.936	.000
Р	Strong Negative	582	.002
K	Strong Positive	.470	.015
Moisture	Moderate Positive	.419	.033

Table 3-87: Spearman's Rho All Habitats at Gold Butte, B Horiz	on
--	----

Table 3-87a: Summary for All Habitats at Gold Butte, B Horizon: Correlation to $CaCO_3$

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.962	.000	
Mg	Strong Positive	.674	.000	
Clay	Strong Positive	.561	.000	
Sand	Strong Negative	552	.000	
Silt	Strong Positive	.477	.000	
Fe	Strong Positive	.462	.000	
SO ₄	Strong Positive	.454	.000	
Ni	Moderate Positive	.428	.001	
EC	Moderate Positive	.373	.003	
Ca	Moderate Positive	.351	.006	
Мо	Moderate Positive	.349	.006	
В	Moderate Positive	.304	.017	

Table 3-87b : Summary for All Habitats at Gold Butte, B Horizon:			
Correlation to Fe			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Ni	Very Strong Positive	.936	.000
Ca	Strong Positive	.767	.000
As	Strong Positive	.566	.000
Inorganic C	Strong Positive	.462	.000
CaCO ₃	Strong Positive	.462	.000
Total C	Strong Positive	.454	.000
pH (1:1)	Strong Negative	450	.000
Mg	Moderate Positive	.392	.002
EC	Moderate Positive	.380	.003
Р	Moderate Negative	378	.003
Cu	Moderate Positive	.373	.003
pH (CaCl ₂)	Moderate Negative	372	.003
Na	Moderate Positive	.330	.009
Мо	Weak Positive	.261	.042

Table 3-88a: Summary for Habitat, Gold Butte, B Horizon: Correlation to CaCO₃

Significant	Correlation to CaCO ₃	Correlation	P-value
Variable	5	coefficient	
Total C	Very Strong Positive	1.000	.000
рН (1:1)	Strong Positive	.819	.001
pH (CaCl2)	Strong Positive	.808	.001
Moisture	Strong Negative	731	.005

Table 3-88b : Summary for Habitat, Gold Butte, B Horizon:					
Correlation to Fe					
Ni	Strong Positive	.764	.002		
As	Strong Positive	.698	.008		
Total N	Strong Negative	681	.010		
Organic C Strong Negative665 .01					
Ca	Strong Positive	.610	.027		

Table3-89:	: Spearman's	Rho Non	-Habitat,	Gold Butte,	B Horizor
------------	--------------	---------	-----------	-------------	-----------

Table 3-89a: Summary for Non-Habitat, Gold Butte, B Horizon: Correlation to CaCO₂

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
As	Strong Positive	.808	.000	
Moisture	Strong Positive	.794	.000	
Ca	Strong Positive	.761	.001	
pH (CaCl ₂)	Strong Negative	738	.002	
pH (1:1)	Strong Negative	727	.002	
Fe	Strong Positive	.660	.007	
Total C	Strong Positive	.645	.009	
Sand	Strong Negative	633	.011	
Mg	Strong Positive	.631	.012	
Ni	Strong Positive	.624	.013	
Silt	Strong Positive	.624	.013	
Со	Strong Negative	567	.028	
SO ₄	Strong Positive	.545	.036	
Mn	Strong Negative	545	.036	
P	Strong Negative	524	.045	

Table 3-89b: Summary for Non-Habitat, Gold Butte, B Horizon:Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.986	.000	
Total C	Strong Positive	.818	.000	
Ca	Strong Positive	.814	.000	
Mg	Strong Positive	.800	.000	
As	Strong Positive	.768	.001	
pH (1:1)	Strong Negative	725	.002	
pH (CaCl ₂)	Strong Negative	671	.006	
Inorganic C	Strong Positive	.660	.007	
CaCO ₃	Strong Positive	.660	.007	
pH (sat. paste)	Strong Negative	604	.017	
Moisture	Strong Positive	.593	.020	

Table 3-90: Spearman's Rho Potential Habitat, Gold Butte, BHorizon

Table 3-90a: Summary for Potential Habitat, Gold Butte, B Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.982	.000
Clay	Strong Positive	.700	.000
Mg	Strong Positive	.692	.000
pH (CaCl ₂)	Strong Positive	.614	.000
Sand	Strong Negative	544	.001
Moisture	Strong Negative	543	.001
К	Strong Positive	.466	.006
Мо	Moderate Positive	.420	.015
Silt	Moderate Positive	.357	.041
NO ₃	Moderate Positive	.354	.043

Table 3-90b: Summary for Potential Habitat, Gold Butte, B Horizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.924	.000	
Ca	Strong Positive	.750	.000	
Cu	Moderate Positive	.448	.009	
Thickness	Moderate Negative	427	.013	
Na	Moderate Positive	.403	.020	
Moisture	Moderate Negative	347	.048	
As	Moderate Positive	.346	.048	

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.992	.000
Р	Strong Negative	579	.000
Mn	Strong Negative	576	.000
Cu	Strong Negative	545	.00
Zn	Strong Negative	518	.002
SO ₄	Strong Negative	473	.00
B	Strong Negative	467	.000
EC	Moderate Negative	443	.010
Organic C	Moderate Positive	.420	.01
Со	Moderate Negative	373	.032
Ca	Moderate Positive	.356	.042
As	Moderate Negative	354	.043
Moisture	Moderate Negative	348	.04

Horizon: Correlation to Fe				
Significant Variable	Correlation to Fe	Correlation coefficient	p-value	
Ca	Very Strong Positive	.945	.000	
Ni	Very Strong Positive	.942	.000	
Cl	Strong Negative	586	.000	
Р	Moderate Negative	437	.011	
В	Moderate Negative	410	.018	
Total C	Moderate Positive	.366	.036	

 Table 3-92: Spearman's Rho Habitat, Bitter Spring, B Horizon

Table 3-92a: Summary for Habitat, Bitter Spring, B Horizon: Correlation to CaCO₃

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	.000
Thickness	Strong Negative	-0.881	.004
Fe	Strong Positive	.857	.007
Organic C	Strong Positive	.833	.010
Ni	Strong Positive	.738	.037
Clay	Strong Positive	.738	.037

Table 3-92b: Summary for Habitat, Bitter Spring, B Horizon:Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Ni	Very Strong Positive	.905	.002	
Total C	Strong Positive	.857	.007	
Inorganic C	Strong Positive	.857	.007	
CaCO ₃	Strong Positive	.857	.007	
Moisture	Strong Negative	833	.010	
Mg	Strong Positive	.738	.037	
Clay	Strong Positive	.738	.037	
В	Strong Negative	714	.047	

Table 3-93 :	Spearman's Rho	Non-Habitat,	Bitter S	pring,	В
---------------------	----------------	--------------	----------	--------	---

Table 3-93a: Summary for Non-Habitat, Bitter Spring, B Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.993	.000	
Cu	Strong Negative	874	.000	
Zn	Strong Negative	798	.000	
Mn	Strong Negative	745	.000	
Со	Strong Negative	600	.008	
Organic C	Strong Positive	.580	.012	
Mg	Strong Positive	.577	.012	
pH (sat. paste)	Strong Positive	.569	.014	
SO ₄	Strong Negative	522	.026	
Р	Strong Negative	520	.027	
В	Strong Negative	469	.050	

Table 3-93b : Summary for Non-Habitat, Bitter Spring, B Horizon:					
Correlation to Fe					
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value		
Ca	Very Strong Positive	.950	.000		
Ni	Very Strong Positive	.948	.000		
Zn	Strong Positive	.486	.041		

Table 3-94: Spearman's Rho Potential Habitat, Bitter Spring, BHorizon

Table 3-94a: Summary for Potential Habitat, Bitter Spring, BHorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	.000
Fe	Strong Positive	.893	.007
Р	Strong Negative	857	.014
Ni	Strong Positive	.857	.014
Ca	Strong Positive	.857	.014

Table 3-94b: Summary for Potential Habitat, Bitter Spring, BHorizon: Correlation to Fe

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Р	Very Strong Negative	964	.000
Ni	Very Strong Positive	.964	.000
Ca	Very Strong Positive	.964	.000
Total C	Strong Positive	.893	.007
Inorganic C	Strong Positive	.893	.007
CaCO ₃	Strong Positive	.893	.007
Moisture	Strong Negative	857	.014
В	Strong Negative	857	.014

Table 3-95: Spea	rman's Rho All Sites, A	All Habitats, B I	Horizon		
Table 3-95a: Sun	nmary for All Sites, Al	l Habitats, B Ho	orizon:		
Correlation to CaCO ₃					
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value		
Total C	Very Strong Positive	.994	.000		
Mg	Strong Positive	.779	.000		
Clav	Strong Positive	.607	.000		
SO ₄	Strong Negative	566	.000		
Co	Strong Negative	566	.000		
Р	Strong Negative	565	.000		
EC	Strong Negative	473	.000		
Fe	Strong Positive	.463	.000		
As	Strong Negative	450	.000		
pH (1:1)	Moderate Positive	.384	.000		
K	Moderate Positive	.377	.000		
Ni	Moderate Positive	.335	.000		
Moisture	Moderate Negative	305	.000		
Cu	Moderate Negative	302	.000		
Total N	Weak Negative	293	.000		
Silt	Weak Negative	276	.000		
Organic C	Weak Negative	265	.001		
Mn	Weak Negative	254	.001		
pH (CaCl ₂)	Weak Negative	212	.007		
Мо	Weak Positive	.198	.011		
В	Weak Negative	163	.037		
Table 3-95b: Sur	nmary for All Sites, Al	l Habs, B Horiz	on: Correlatior		
to Fe	•				
Significant	Correlation to Fo	Correlation	n voluo		
Variable	Correlation to re	coefficient	p-value		
Ni	Very Strong Positive	.952	.000		
P	Strong Negative	618	.000		
Ca	Strong Positive	.564	.000		
Inorganic C	Strong Positive	.463	.000		
CaCO ₃	Strong Positive	.463	.000		
Total C	Strong Positive	.451	.000		
K	Moderate Positive	.420	.000		
Mg	Moderate Positive	.373	.000		
Na	Moderate Positive	.348	.000		
pH (CaCl ₂)	Weelt Megative	200	000		
	weak negative	298	.000		
Clay	Weak Negative Weak Positive	.298	.000		
Clay Mo	Weak Positive Weak Positive	298 .290 .283	.000 .000		
Clay Mo CEC	Weak Positive Weak Positive Weak Positive	298 .290 .283 .262	.000 .000 .001		
Clay Mo CEC Organic C	Weak Negative Weak Positive Weak Positive Weak Negative	298 .290 .283 .262 244	.000 .000 .001 .001		
Clay Mo CEC Organic C Cl	Weak Negative Weak Positive Weak Positive Weak Negative Weak Negative	298 .290 .283 .262 244 236	.000 .000 .001 .002 .002		
Clay Mo CEC Organic C Cl pH (sat. paste)	Weak Negative Weak Positive Weak Positive Weak Negative Weak Negative Weak Negative	298 .290 .283 .262 244 236 219	.000 .000 .000 .001 .002 .002 .005		
Clay Mo CEC Organic C Cl pH (sat. paste) Total N	Weak Negative Weak Positive Weak Positive Weak Negative Weak Negative Weak Negative Weak Negative	298 .290 .283 .262 244 236 219 217	.000 .000 .001 .002 .002 .005 .005		
Clay Mo CEC Organic C Cl pH (sat. paste) Total N B	Weak Negative Weak Positive Weak Positive Weak Negative Weak Negative Weak Negative Weak Negative Weak Negative	298 .290 .283 .262 244 236 219 217 .187	.000 .000 .001 .002 .002 .005 .005 .017		
Clay Mo CEC Organic C Cl pH (sat. paste) Total N B Co	Weak Negative Weak Positive Weak Positive Weak Negative Weak Negative Weak Negative Weak Negative Weak Negative Weak Negative Weak Negative	298 .290 .283 .262 244 236 219 217 .187 181	.000 .000 .000 .001 .002 .002 .005 .005 .017 .021		

Table 3-96a: Su	mmary for All Sites, H	labitat, B Horiz	zon:	
Correlation to CaCO ₃				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.996	.000	
Moisture	Strong Negative	822	.000	
pH (1:1)	Strong Positive	.767	.000	
Mg	Strong Positive	.729	.000	
EC	Strong Negative	699	.000	
SO ₄	Strong Negative	681	.000	
Clay	Strong Positive	.625	.000	
As	Strong Negative	557	.000	
Р	Strong Negative	492	.001	
Со	Strong Negative	465	.001	
Total N	Moderate Negative	437	.002	
Silt	Moderate Negative	420	.004	
Fe	Moderate Positive	.312	.035	
В	Moderate Negative	302	.042	
pH (sat. paste)	Moderate Positive	.301	.042	
Organic C	Weak Negative	291	.050	

 Table 3-96:
 Spearman's Rho All Sites, Habitat, B Horizon

Table 3-96b: Summary for All Sites, Habitat, B Horizon:Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.919	.000
Ca	Strong Positive	.542	.000
CEC	Strong Positive	.514	.000
Мо	Strong Positive	.491	.001
K	Strong Positive	.488	.001
Organic C	Strong Negative	460	.001
Р	Moderate Negative	444	.002
Silt	Moderate Negative	444	.002
Mn	Moderate Positive	.436	.002
Total N	Moderate Negative	435	.003
pH (sat. paste)	Moderate Negative	431	.003
Na	Moderate Positive	.385	.008
Sand	Moderate Positive	.316	.032
Inorganic C	Moderate Positive	.312	.035
CaCO ₃	Moderate Positive	.312	.035
pH (CaCl ₂)	Weak Negative	298	.044

Correlation to $CaCO_3$			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.976	.000
Mg	Strong Positive	.795	.000
Со	Strong Negative	564	.000
SO ₄	Strong Negative	521	.000
Mn	Strong Negative	497	.000
P	Moderate Negative	427	.002
pH (CaCl ₂)	Moderate Negative	424	.002
Moisture	Moderate Positive	.410	.003
Cu	Moderate Negative	400	.003
EC	Moderate Negative	388	.004
Clay	Moderate Positive	.374	.006
Fe	Moderate Positive	.347	.012
Zn	Moderate Negative	342	.013

 Table 3-97:
 Spearman's Rho All Sites, Non-Habitat, B Horizon

Table 3-07a: Summary for All Sites Non-Habitat B Horizon:

Table 3-97b: Summary for All Sites, Non-Habitat, B Horizon:
 Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.982	.000
Ca	Strong Positive	.830	.000
Р	Strong Negative	648	.000
Mg	Strong Positive	.538	.000
рН (1:1)	Strong Negative	499	.000
Na	Strong Positive	.483	.000
В	Strong Positive	.482	.000
As	Strong Positive	.459	.001
Moisture	Strong Positive	.457	.001
Mn	Moderate Negative	430	.001
pH (CaCl ₂)	Moderate Negative	407	.003
Мо	Moderate Positive	.395	.004
К	Moderate Positive	.392	.004
Inorganic C	Moderate Positive	.347	.012
CaCO ₃	Moderate Positive	.347	.012
pH (sat. paste)	Moderate Negative	340	.014
Total C	Moderate Positive	.333	.016
Со	Moderate Negative	310	.025

Table 3-98a: Summary for All Sites, Potential Habitat, B Horizon: Correlation to CaCO ₃			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.996	.000
Mg	Strong Positive	.771	.000
Moisture	Strong Negative	747	.000
Clay	Strong Positive	.672	.000
Р	Strong Negative	666	.000
As	Strong Negative	641	.000
SO ₄	Strong Negative	613	.000
Со	Strong Negative	572	.000
EC	Strong Negative	540	.000
pH (1:1)	Strong Positive	.528	.000
Fe	Strong Positive	.520	.000
K	Strong Positive	.516	.000
Organic C	Moderate Negative	422	.000
Ni	Moderate Positive	.365	.003
Cu	Moderate Negative	342	.005
Silt	Weak Negative	296	.016
Total N	Weak Negative	269	.029
В	Weak Negative	244	.049

Table 3-98: Spearman's Rho All Sites, Potential Habitat, B Horizor

Table 3-98b: Summary for All Sites, Potential Habitat, B Horizon:
 Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value	
Ni	Very Strong Positive	.930	.000	
Р	Strong Negative	573	.000	
Inorganic C	Strong Positive	.520	.000	
CaCO ₃	Strong Positive	.520	.000	
Total C	Strong Positive	.518	.000	
Ca	Strong Positive	.451	.000	
Moisture	Moderate Negative	354	.004	
K	Moderate Positive	.316	.010	
Clay	Moderate Positive	.304	.013	
Mg	Moderate Positive	.300	.014	
Na	Weak Positive	.294	.017	
CEC	Weak Positive	.264	.032	
Со	Weak Negative	253	.041	

Table 3-99a : Summary for All Habitats, Gold Butte, C Horizon: Correlation to CaCOa				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.988	.000	
Clay	Strong Positive	.725	.000	
Fe	Strong Positive	.721	.000	
Р	Strong Negative	710	.000	
Mg	Strong Positive	.695	.000	
Moisture	Strong Negative	663	.000	
Cl	Strong Positive	.623	.000	
Мо	Strong Positive	.609	.001	
EC	Strong Positive	.608	.001	
Ni	Strong Positive	.603	.001	
Na	Strong Positive	.593	.001	
SO ₄	Strong Positive	.588	.001	
pH (CaCl ₂)	Strong Positive	.545	.003	
pH (1:1)	Strong Positive	.530	.004	
В	Strong Positive	.489	.008	
K	Strong Positive	.489	.008	
Ca	Strong Positive	.480	.010	
Zn	Moderate Positive	.426	.024	
CEC	Moderate Negative	416	.031	
Cu	Moderate Positive	.387	.042	

Table 3-99: Spearman's Rho All Habitats, Gold Butte, C Horizon

Correlation to Fe Significant Correlation **Correlation to CaCO₃ P-value** Variable coefficient Ni Strong Positive .000 .836 .000 Inorganic C Strong Positive .721 .721 CaCO₃ Strong Positive .000 .000 Total C Strong Positive .703 .000 Cu Strong Positive .681 .667 .000 Ca Strong Positive .574 Zn Strong Positive .001 Strong Positive .571 .001 Mg B Strong Positive .531 .004 Strong Negative .005 Moisture -.520 .482 .009 Clay Strong Positive Strong Positive .461 .013 Mn Мо Strong Positive .451 .016 Moderate Positive .439 .019 K

Moderate Negative

Moderate Positive

-.434

.377

Table 3-99a: Summary for All Habitats, Gold Butte, C Horizon:

Р

Na

.021

.048

Table 3-100: S	pearman's Rho	Habitat,	Gold Butte,	C Horizon
----------------	---------------	----------	-------------	-----------

Table 3-100a: Summary for Habitat, Gold Butte, C Horizon: Correlation to CaCO₂

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	.000
Р	Strong Negative	773	.005
pH (CaCl ₂)	Strong Positive	.755	.007
Sand	Strong Negative	755	.007
CEC	Strong Negative	733	.016
Moisture	Strong Negative	718	.013
pH (1:1)	Strong Positive	.682	.021
Ni	Strong Positive	.682	.021
Ca	Strong Positive	.682	.021

Table 3-100b: Summary for Habitat, Gold Butte, C Horizon:
 Correlation to Fe Significant Correlation Correlation to CaCO₃ **P-value** Variable coefficient Cu Strong Positive .764 .006 Strong Positive .664 .026 Ni

Table 3-101: Spearman's Rho Non-Habitat, Gold Butte, C Horizon

Table 3-101a: Summary for Non-Habitat, Gold Butte, C Horizon: Correlation to CaCO₃

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.964	.000
Мо	Very Strong Positive	.964	.000
Mg	Very Strong Positive	.929	.003
Na	Strong Positive	.893	.007
Clay	Strong Positive	.893	.007
В	Strong Positive	.857	.014
Sand	Strong Negative	857	.014
Silt	Strong Positive	.786	.036

Table 3-101b: Summary for Non-Habitat, Gold Butte, C Horizon:				
Correlation to Fe				
Ni	Very Strong Positive	.964	.000	
Mn	Strong Positive	.821	.023	
Cu	Strong Positive	.821	.023	
K	Strong Positive	.821	.023	

Table 3-102: Spearman's Rho Potential Habitat, Gold Butte, C

 Horizon

Table 3-102a: Summary for Potential Habitat, Gold Butte, CHorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Moisture	Very Strong Negative	985	.000
Total C	Very Strong Positive	.979	.000
Fe	Very Strong Positive	.924	.000
pH (CaCl ₂)	Strong Positive	.872	.001
рН (1:1)	Strong Positive	.802	.005
Ni	Strong Positive	.766	.010
Mg	Strong Positive	.748	.013
Organic C	Strong Negative	681	.030
Na	Strong Positive	.681	.030
Ca	Strong Positive	.638	.047
В	Strong Positive	.632	.050

Table 3-102b: Summary for Potential Habitat, Gold Butte, C				
Horizon: Correla	tion to Fe			
Moisture	Very Strong Negative	927	.000	
Inorganic C	Very Strong Positive	.924	.000	
CaCO ₃	Very Strong Positive	.924	.000	
Total C	Strong Positive	.879	.001	
Ni	Strong Positive	.855	.002	
Organic C	Strong Negative	818	.004	
pH (CaCl ₂)	Strong Positive	.717	.020	
Na	Strong Positive	.709	.022	
Ca	Strong Positive	.661	.038	

Table 3-103: Spearman's Rho All Habitats, Bitter Spring, C

 Horizon

Table 3-103a: Summary for All Habitats, Bitter Spring, C Horizon: Correlation to CaCO₃

	÷		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.991	.000
Р	Strong Negative	594	.001
Ca	Strong Positive	.557	.002
Ni	Strong Positive	.528	.003
Moisture	Strong Negative	510	.005
Fe	Strong Positive	.488	.007
В	Strong Negative	484	.008
Со	Strong Negative	469	.010
Zn	Moderate Negative	396	.033
EC	Moderate Negative	381	.042

Table 3-103b: Summary for All Habitats Bitter Spring, C Horizon: Correlation to Fe Significant Correlation **Correlation to Fe** p-value Variable coefficient Ca Very Strong Positive .902 .000 Ni Strong Positive .857 .000 -.706 .000 p Strong Negative Total C Strong Positive .494 .007 .488 .007 Inorganic C Strong Positive Strong Positive .488 .007 CaCO₃

 Table 3-104:
 Spearman's Rho Habitat, Bitter Spring, C Horizon

Table 3-104a: Summary for Habitat, Bitter Spring, C Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.978	.000	
pH (sat. paste)	Strong Positive	.663	.014	
NO ₃	Strong Positive	.630	.021	
Ca	Strong Positive	.604	.029	
Р	Strong Negative	555	.049	

Table 3-104b: Summary for Habitat, Bitter Spring, C Horizon:
 Correlation to Fe Ca Very Strong Positive .973 .000 Very Strong Positive .918 .000 Ni Мо Strong Positive .698 .008 Co Strong Positive .591 .033 Thickness Strong Positive .586 .035 K Strong Positive .571 .041 Strong Positive .569 .042 NO₃

Fable 3-105:	Spearman's	Rho Non	-Habitat,	Bitter S	Spring, (С
Horizon						

Table 3-105a: Summary for Non-Habitat, Bitter Spring, CHorizon: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	1.000	.000
EC	Very Strong Negative	943	.005
Total N	Very Strong Negative	943	.005
Organic C	Very Strong Positive	.943	.005
B	Very Strong Negative	943	.005
Zn	Very Strong Negative	943	.005
NO ₃	Strong Negative	829	.042
Со	Strong Negative	829	.042
Cu	Strong Negative	829	.042
Na	Strong Negative	829	.042

Table 3-105b: Summary for Non-Habitat, Bitter Spring, C				
Horizon: Correlation to Fe				
SO ₄	Very Strong Negative	943	.005	
Ca	Very Strong Positive	.943	.005	
Ni	Strong Positive	.886	.019	
pH (CaCl ₂)	Strong Negative	829	.042	

Table 3-106: Spearman's Rho Potential Habitat, Bitter Spring, CHorizon

Table 3-106a: Summary for Potential Habitat, Bitter Spring, C Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.976	.000
Ni	Strong Positive	.661	.038
Р	Strong Negative	636	.048

Table 3-106b: Summary for Potential Habitat, Bitter Spring, C				
Horizon: Correlation to Fe				
Significant	Correlation to CaCO ₂ Correlation P-value			
Variable		coefficient	I vulue	
Р	Strong Negative	758	.011	
Ca	Strong Positive	.685	.029	
Table 3-107a: Summary for All Sites, All Habitats, C Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.992	.000
Moisture	Strong Negative	595	.000
Р	Strong Negative	590	.000
Fe	Strong Positive	.557	.000
Ni	Strong Positive	.540	.000
Ca	Strong Positive	.457	.000
Mg	Moderate Positive	.429	.001
Clay	Moderate Positive	.371	.004
pH (1:1)	Weak Positive	.282	.031
Co	Weak Negative	260	.047

Table 3-107b : Summary for All Sites, All Habitats, C Horizon:Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.834	.000
Ca	Strong Positive	.720	.000
Inorganic C	Strong Positive	.557	.000
	Strong Positive	.557	.000
Р	Strong Negative	548	.000
Total C	Strong Positive	.543	.000
Moisture	Moderate Negative	413	.001
Cu	Moderate Positive	.413	.001
Zn	Moderate Positive	.391	.002
K	Moderate Positive	.389	.002
Mg	Moderate Positive	.372	.004
Total N	Moderate Negative	328	.011
As	Moderate Positive	.307	.018
В	Moderate Positive	.306	.018
Мо	Moderate Positive	.304	.019
Na	Weak Positive	.275	.035

Table 3-108a: Summary for All Sites, Habitat, C Horizon: Correlation to CaCO₃

	5		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.976	.000
Р	Strong Negative	670	.000
NO ₃	Strong Positive	.616	.001
pH (1:1)	Strong Positive	.611	.002
pH (CaCl ₂)	Strong Positive	.601	.002
Ca	Strong Positive	.579	.003
pH (sat. paste)	Strong Positive	.573	.003
Moisture	Strong Negative	551	.005

Table 3-108b : Summary for All Sites, Habitat, C Horizon:Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.730	.000
Ca	Strong Positive	.609	.002
Mg	Strong Positive	.489	.015
Cu	Strong Positive	.450	.028
Zn	Moderate Positive	.404	.050

Table 3-109: Spear	nan's Rho All Site	es, Non-Habitat,	C Horizon
--------------------	--------------------	------------------	-----------

Table 3-109a: Summary for All Sites, Non-Habitat, C Horizon:Correlation to $CaCO_3$

Significant	Correlation to CaCO	Correlation	P-value
Variable		coefficient	I -value
Total C	Very Strong Positive	.989	.000
Mg	Strong Positive	.525	.044

Table 3-109b: Summary for All Sites, Non-Habitat, C Horizon:			
Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.886	.000
K	Strong Positive	.800	.000
pH (sat. paste)	Strong Negative	618	.014
As	Strong Positive	.614	.015
CEC	Strong Positive	.564	.028
В	Strong Positive	.514	.050

Table 3-110: Spearman's Rho All Sites, Potential Habitat, C

 Horizon

Table 3-110a: Summary for All Sites, Potential Habitat, C Horizon: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.982	.000
Moisture	Strong Negative	797	.000
Fe	Strong Positive	.720	.000
pH (CaCl ₂)	Strong Positive	.636	.003
рН (1:1)	Strong Positive	.619	.004
Na	Strong Positive	.569	.009
Mg	Strong Positive	.555	.011
Organic C	Strong Negative	545	.013
Ni	Strong Positive	.481	.032
Мо	Strong Positive	.455	.044

Table 3-110b: Summary for All Sites, Potential Habitat, C Horizon: Correlation to Fe Significant Correlation **Correlation to Fe** p-value Variable coefficient Moisture Strong Negative -.734 .000 Inorganic C Strong Positive .720 .000 CaCO₃ .720 .000 Strong Positive Total C Strong Positive .708 .000 .592 .006 Strong Positive Ni Organic C Strong Negative -.564 .010 .021 Strong Positive .513 Ca Strong Negative .024 Р -.502 .025 Strong Positive .501 Na .492 .028 Strong Positive Mg

IV. Discussion and Interpretation

General Overview

At the most general level, we note that total carbon, inorganic carbon, percent calcium carbonate equivalence, available calcium, iron, and nickel were consistently found to be significantly (p < 0.05) higher in buckwheat/habitat sites compared to soils in non-buckwheat or non-habitat sites (see Table 3-48). Deviations from this trend were not found even for comparisons in which these variables did not prove statistically significant. Phosphorus, cobalt, and total nitrogen were generally found to be significantly lower in buckwheat habitat than in non-habitat or potential habitat (also non-buckwheat which includes non-habitat and potential habitat combined) (Tables 3-48 to 3-50). Again, these trends generally held true even when the differences were statistically inconclusive. We also note that sulfate was only infrequently indicated as a significant variable in our analysis, thus underscoring the point that the content of soil gypsum or other sulfate salt minerals does not by itself seem to account for the distributions of the Las Vegas buckwheat in Clark County. It may be that either the species is not a true gypsophile (e.g., Drohan & Merkler, 2009), or that other factors common to gypsum soils are more important.

Other variables besides those already mentioned were found to be significant between sample groupings, however, they were either found infrequently, occurred less consistently between different comparisons, or occurred in only one study area. For instance, the CEC of buckwheat habitat soils at Gold Butte was significantly lower than non-buckwheat sites, however, this trend did not hold true at the other areas (Table 3-8). Similarly, available boron was lower in buckwheat sites in almost all comparisons at Bitter Spring (Tables 3-48c & 3-49c), but was greater only in the B horizons at Coyote Springs (Tables 3-48a), and was not at all significant with regard to buckwheat sites at Gold Butte (Tables 3-48b & 3-49b). Comparison of boron values both between classes and between study areas reveals overlapping ranges and/or similar means (e.g.,Tables 3-2 to 3-5). This point underscores the need to interpret any variable identified as significant within the context of other soil factors (including geologic parent materials), and as part of the natural scenarios under which micronutrient deficiency or toxicity may respond to soil pH, texture, mineralogy, or other site-specific properties. Trends specific to each individual study area, and determined for the entire data set are discussed in detail below.

Coyote Springs Trends

Variables most commonly found to be significant between buckwheat and nonbuckwheat sites at Coyote Springs included total C, inorganic C, CaCO₃, available Ca, Mg, Fe, Ni, P, and total N (Tables 3-48a, 3-49a, & 3-50a). Of these variables, only available P and total N were lower in buckwheat habitat; the others were all higher. Additional variables including available K, As, B, Co, and Cu were significant only in some comparisons. Of these, available K, As, and B were greater in buckwheat sites, and available Co and Cu were lower (Tables 3-48a, 3-49a, & 3-50a). Comparisons of minimum and maximum values within the Coyote Springs data (e.g., Tables 3-9a, 3-10a, and 3-15a to 3-20a) reveal that, except for total N, available Co, P, and Cu, the higher median consistently fell into the buckwheat habitat class, suggesting that those variables *could* indicate the lower thresholds (especially in the case of the minimum values) of habitat-limiting soil factors. It seems unlikely that the reverse is true - high total N may drive competition with other plants, but it is not likely to limit growth of the buckwheat. However, it is possible that the lower available Cu values do reflect either a lower nutrient requirement for or higher sensitivity to Cu than other species in the study area. This point will be revisited below.

Variables that were most commonly found to be significant between buckwheat habitat and potential habitat include available Ca, Fe, and Ni. All of these variables are greater in buckwheat habitats (Table 3-49a). Additionally, pH, total C, inorganic C, CaCO₃ were greater in the whole profile means, and available Cu was lower in the A horizon comparisons (Table 3-49a). Available arsenic was found to be higher in the B horizon weighted means only.

Comparisons between potential habitat and non-habitat returned a suite of significant variables similar to those of the buckwheat vs. non-buckwheat sites. This indicates that the visual observations used to define potential habitats at Coyote Springs were accurate and may prove useful in other similar settings. Potential habitat soils contained greater amounts of total C, inorganic C, CaCO₃, available Ca, Mg, Fe, and Ni; and lower amounts of available P, Co, and total N compared to non-habitats (Tables 3-50a). Differences in these trends included greater Mo, CEC, and clay; and less silt in the potential habitats. The latter may be due to the prevalence of desert pavements in non-habitat map units at Coyote Springs. The increase in CEC in the B horizons of potential habitats is likely caused by the corresponding increase in clay. Higher clay content likely reflects increased pedogenesis in these sites and the presence of numerous paleosols within the Las Vegas Formation (see Chapter 2). One of the most interesting observations to make from the Coyote Springs results is that of trends between habitat classes. For some variables, potential habitat medians fell perfectly between habitat and non-habitat values. Using Fe medians in the soil profile comparisons (i.e., the *median* profile mean) as an example: Non-habitat Fe = 8.861 < Potential Habitat Fe = 10.866 < Habitat Fe = 13.497.

Gold Butte Trends

Similar to Coyote Springs, the variables most commonly found to be significant between buckwheat sites and non-buckwheat sites at Gold Butte were total C, inorganic C, CaCO₃, and available Fe, which were all higher in buckwheat sites, and available P and CEC which were lower (Table 3-48b). Other variables significant in some comparisons included available Ca (greater in A horizons), available Mg (greater in whole profile and C horizons), available Ni (greater in while profile and A horizons), available K (greater in C horizons), available As (greater in A horizons), SO₄ (greater in C horizons), available Co & Mn (lower in A horizons), clay (greater in A and C horizons), silt (greater in A and B horizons) and sand (lower in A horizons) (Table 3-48b). Interestingly, the Gold Butte data are distinct from Coyote Springs

because they exhibit consistent differences in (1) CEC, which are lower in buckwheat sites, and (2) soil textural parameters, which overall indicate less sand in the buckwheat-populated soils.

Comparisons of minimum and maximum values within the Gold Butte data also seem to parallel the consistently higher buckwheat habitat medians for variables such as total C, inorganic C, available Fe, Ni, Ca, and lower medians for available P and CEC (e.g., Tables 3-9b, 3-10b, and 3-15b to 3-20b).

Comparisons among buckwheat habitat, potential habitat, and non-habitat indicate that visual observations were less effective at predicting changes in soil chemical and physical characteristics that might control buckwheat distribution. There were many significant differences between buckwheat habitat and potential habitat, and there were also many differences between potential habitat and non-habitat. Some of these characteristics mirror trends between buckwheat sites and non-buckwheat sites whereas others do not. When comparing buckwheat habitat to potential habitat, we found that habitat consistently contained more total C, inorganic C, CaCO₃, and had a lower CEC (Table 3-49b). Other significant results were found less often: habitat had higher pH values, available Fe, and clay (in C horizons), higher available Ca & Ni (in A horizons), lower available P (in C horizons), lower available Co & Mn (in A horizons), lower moisture (in C horizons), and lower CI (in B horizons) (Table 3-49b).

Differences between potential habitat and non-habitat were many: potential habitat had lower pH values and sand, and had greater total C, inorganic C, CaCO₃, available Ca, Mg (B horizons only), Fe, Ni, B, As, Cu (A horizons only), SO₄, moisture, EC, Cl (B horizons only), NO₃, total N, clay (A horizons only), and silt (Tables 3-50b). Currently, there are no accurate methods to measure moisture in soils containing gypsum and other soluble salts. In soils such as these, moisture estimates are generally greater whenever hydrous minerals (i.e. gypsum) are present. Thus, increased moisture values in this study most likely indicate that hydrous salts are present and do not accurately reflect air-dry soil water contents. Further support for this interpretation lies in the common association of higher moisture with increased SO₄, Cl, and/or EC.

While differences between buckwheat and non-buckwheat sites are similar at both Coyote Springs and at Gold Butte, the other habitat groupings reveal greater complexity at Gold Butte. This complexity likely reflects the proportionately greater soil and surficial geologic differences between habitat classes at Gold Butte versus Coyote Springs.

This point is supported by the fact that sulfate was found to be a significant variable in Chorizons of buckwheat sites versus non-buckwheat sites at Gold Butte (e.g., Tables 3-14b and 3-23b). We interpret this as a logical result given the narrow distribution of buckwheat within Qea swales between outcrops of gypsum bedrock (Chapter 2). Depth to bedrock is shallow in buckwheat sites; in comparison, non-buckwheat sites are dominated by sandier, thicker Qa alluvium that extends to depth (1-2 meters or more). Therefore an important controlling factor for buckwheat distribution here may not be SO_4 at all, but depth to a restricting layer where water may be more available to shallow roots.

Bitter Spring Trends

Bitter Spring was the most unique of the three study areas. Statistical analysis of data from Bitter Spring sites reveals few significant variables consistently shared with either Coyote Springs or Gold Butte. Moreover, the variables that are indicated as statistically different are less pervasive between different groupings or comparisons of the Bitter Spring data. Whereas CaCO₃, total carbon, inorganic C, available Ca, and Mg typically might *all* be significant at the same time in any one Coyote Springs or Gold Butte comparison, only *one* of those variables might prove significantly different in a Bitter Spring test. The most frequently significant variable at Bitter Spring was available boron, which was lower in buckwheat sites versus other classes. While the trends for the other significant variables found at the other two sites still hold true at Bitter Spring, what differs is that the buckwheat and non-buckwheat sites at Bitter Spring are more similar to each other than they are in Coyote Springs or Gold Butte, and therefore they do not show up as being statistically significant. Results do broadly agree with the other sites in that greater inorganic C, CaCO₃, available Ca, Ni and lower available Co were also found in Bitter Spring habitat sites.

Buckwheat sites were significantly different from non-buckwheat sites at Bitter Spring in the following characteristics: lower pH values, available Co (whole profile and B horizons), lower available B (in all comparisons except A horizons), lower NO₃ (whole profile and A horizons), lower Na (in B horizons), lower available Mo (in C horizons), higher available Ni, Ca, and total C (in C horizons), higher inorganic C and CaCO₃ (in A and C horizons), and higher SO₄ and moisture (in B horizons) (see Table 3-48c).

Comparisons of profile and horizon minima and maxima at Bitter Spring revealed, overall, significantly higher CaCO₃, inorganic C, available Ni, and Zn in buckwheat sites versus non-buckwheat, and significantly lower pH, available Cl, B, Co, Na, and NO₃ (e.g., Tables 3-9c, 3-10c, and 3-15c to 3-20c). A horizons generally exhibited the fewest numbers of significant variables, while C horizons exhibited the most. These results were similar for comparisons of minimum and maximum values between habitat and potential habitat (Tables 3-25c, 3-26c, and 3-31c to 3-36c).

Significant variables between buckwheat habitat and "potential" habitat included: greater available Ca and Ni (in all comparisons except B horizons), lower B (in all comparisons except A horizons), lower available Co (in whole profile and A horizons), lower available Mg & Na (whole profile and B horizons), lower pH & CEC values (in C horizons), greater C, inorganic C, CaCO₃ (in C horizons) and greater clay (in A horizons) in buckwheat habitats (Table 3-49c).

There was almost no overlap between the Bitter Spring data and the other sites when it came to comparisons between potential habitat and non-habitat. Potential habitat contained greater sand and moisture (in whole soil and A horizons), greater EC values (A horizons), greater CEC values (in all comparisons except A horizons), lower clay (in all but C horizons) and lower silt (in whole soil and A horizons) (Table 3-50c). In some cases the trends at Bitter Spring were reversed relative to the other study areas. As an example, mean profile sand percentages were higher in potential habitat than non-habitat sites at Bitter Spring, but lower in Gold Butte

potential habitat sites. Out of the three study areas, visual observations to predict buckwheat habitat were least useful in Bitter Spring.

Trends across all study areas (all sites combined)

Results from comparisons of all of the data across all of the study areas combined indicate that, compared to non-buckwheat sites, buckwheat/habitat sites contained: greater total C, inorganic C, and CaCO₃, more available Fe & Ni, lower available P (in all correlations), greater Ca (in all correlations except B horizons), lower N (in whole profiles and B horizons), greater Mg (in whole profiles and A horizons), greater K (in whole profiles), greater moisture (in B horizons), lower available Co (in whole profiles and A horizons), lower available Mn, Cu, Zn (in A horizons), lower Cl (in B horizons), and lower pH values (in B horizons) (Table 3-48d). Comparisons of profile and horizon minimum and maximum values corroborate these trends.

Compared to potential habitat, buckwheat/habitat sites contained greater total C, available Fe & Ni, and lower available P (in all correlations), greater inorganic C, CaCO₃, Ca (in all correlations except B horizons), lower available Co & Cu (in whole profiles and A horizons), lower available Mn & Zn (in A horizons), lower total N (in whole profiles and B horizons), lower NO₃ (in whole profiles), greater available K (in whole profiles), lower Cl (in B horizons), lower moisture (in C horizons), and higher clay (in A horizons) (Table 3-49d).

Mann-Whitney results from potential habitat to non-habitat comparisons across all study areas (Table 3-50d) were distinct from the other group comparisons, demonstrating that potential habitat contained greater moisture in all comparisons, greater SO₄, Cl, and NO₃ (in whole profile and B horizons), greater EC and lower pH values (in all comparisons except C horizons), lower K (in A horizons), greater CEC (in C horizons), and greater available Ca, Fe, and Ni (in A horizons). The lower pH, and higher SO₄, Cl, NO₃, EC and moisture values suggests higher salinity in potential habitat sites due to the greater dominance of evaporites and related sedimentary rock strata (map units Tss and Tgyp). In comparison, non-habitat sites were dominated by alluvium or colluvium (Qa4 or Qa5 through Qa1).

Interpretations

The worldwide paucity of published research into non-agricultural arid soil properties and native plant requirements poses a major obstacle to interpreting our results. Despite this limitation, we note that commonly recurring significant results in this study do allow several major inferences. Our results suggest that buckwheat favors soils both rich in CaCO₃ and that contain more available Fe, Ni, Ca, and/or Mg. The significantly lower amounts of available P, Co, Mn, Cu, and Zn in buckwheat habitats are likely also very important, particularly in relation to competition with other plants.

Soils that contain $CaCO_3$ *and* have highly available Fe are extremely rare and only occur where specific combinations of parent materials and pedogenic processes operate in tandem. This rarity may, in part, explain the localized and infrequent occurrences of buckwheat. However, if Fe availability were the only determining factor, other plants should also be thriving

on, or restricted to, these soils. At present, we have no data to conclusively suggest that this is the case, however, we do note that the restricted habitat conditions of *Arctomecon californica* do sometimes overlap *E. corymbosum* var. *nilesii* (Drohan & Merkler 2009; field observations from this study). We also note that buckwheat was often the dominant species, and more rarely the sole species, within habitat sites at Coyote Springs. Thus, some additional factor, or set of factors likely affects vegetation dynamics in buckwheat habitats. Buckwheat is also apparently able to tolerate low available P, Co, Mn, Cu, and Zn, which may also either limit competition from other plants, or drive some other critical ecological process. Lastly, some buckwheat sites had significantly more As. Although As was not significant at all study areas, it may be an additional complicating edaphic or ecological factor. These parameters describe at least partly, the abiotic factors involved in controlling the rarity of suitable environments for buckwheat. Although much further research is needed, interpretations are presented below regarding the geologic factors and soil processes most likely to be creating the correlations found in this study.

Because greater CaCO₃, inorganic C, and total C, and available Ca & Mg, all result directly from increased soil CaCO₃, the strong correlations between these variables and buckwheat distributions suggest that E. corymbosum var. nilesi favors soil habitats high in CaCO₃. In fact, some buckwheat sites were very strongly restricted to highly calcareous geologic deposits (e.g. Las Vegas Formation in Coyote Springs - see Chapter 2). In such arid, calcareous, sparsely-vegetated soils, percent CaCO₃ often determines total C because inorganic C is the largest source of soil C (e.g., Tables 3-51a to 3-66a). This holds true except for rare desert wetland or spring environments, or under plant canopies, where organic C can become an important component of the soil's total C (see Chapter 4). Similarly, available Ca and Mg are strongly controlled by soil and lithological carbonate. In Mojave soils, available Ca is primarily a function of CaCO₃ and gypsum, whereas Mg is commonly derived from dolomite, high Mgcalcite or Mg-rich limestone. XRD results suggest that Mg in our study areas is primarily derived from carbonate minerals enriched in Mg (Table 3-6). Mg was statistically significant slightly less often than Ca, but this is expected because dolomite not only contains both Ca and Mg, but also is typically less abundant than calcite in parent materials and more variable in composition. Moreover, pedogenic CaCO₃ generally is composed of low-Mg calcite (~3-4% Mg).

The ratio of Ca to Mg is sometimes considered more important to plant availability than total Mg because Mg is less tightly held in the soil than Ca (Brady & Weil, 2008). This relationship is not well-studied for non-agricultural, calcareous soils, but in general it is thought that plants can meet their Mg requirements with Ca:Mg ratios less than 15:1 (Brady & Weil, 2008). Although, Lafuente et al., (2001) suggest that grasses and shrubs in northern Spain may be Mg-deficient at Ca:Mg ratios greater than 10:1. Therefore, we compared the Ca:Mg ratios of soil horizons and whole profiles in buckwheat sites versus non-buckwheat sites (Tables 3-44 to 3-47). Coyote Springs produced no significant relationships between Ca:Mg ratios in buckwheat sites versus non-buckwheat sites and the ratios varied between approximately 1:1 and 9:1 (Table 3-44a to 3-46a). In contrast, at Bitter Spring, buckwheat site Ca:Mg ratios were significantly higher (nearly 30:1) in whole soil profiles, B horizons, and C horizons (Tables 3-44c to 3-47c).

This indicates that buckwheat sites are more deficient in Mg as compared to non-buckwheat sites. At Gold Butte, we found significantly different Ca:Mg ratios in the whole profile and in C horizons. In both cases, the lower buckwheat Ca:Mg ratio indicates that there is more available Mg as compared to non-buckwheat sites. Some non-buckwheat sites have ratios as high as 118:1 (Tables 3-44d & 3-46d), suggesting that some of these soils are likely very Mg deficient. Ca:Mg ratios were not statistically significant when data from all sites were combined (Tables 3-44d to 3-47d), however, absolute values ranged from very low to extremely high. This indicates enormous variability in plant-available Mg across all study areas.

Worldwide, arid soils ubiquitously contain $CaCO_3$, either as a component of the parent material, whether primary or blown in as eolian dust, and/or as a result of pedogenic accumulations in arid to semi-arid climates. Accumulation of CaCO₃ over time is one of the most important pedogenic processes occurring in arid soils is (Gile et al., 1981). Dust and rain add copious amounts of Ca^{+2} ions to arid soils (Gile et al., 1966, 1981), while plant root respiration pumps CO_2 into the soil. Ca^{+2} , H_2O_2 , and CO_2 combine to form $CaCO_3$, which accumulates in the subsurface because arid climates lack the water necessary to leach it from the soil. This lack of leaching in arid soils also prevents losses of CaCO₃-containing parent materials. The net result is that nearly all soils in arid and semi-arid climates contain some amount of CaCO₃. Soils on older landforms and those that form in CaCO₃-rich parent materials, may contain so much CaCO₃ that it controls nearly all of their physical and chemical properties (e.g. Brock and Buck, 2009). Consequently, high CaCO₃ content alone must not determine habitat viability for buckwheat, otherwise, buckwheat would be far more prevalent in Clark County, and far more widely distributed within the study areas. Many of the "non-habitat" soils contain large amounts of CaCO₃, and a few buckwheat sites contain relatively low amounts of CaCO₃ (< 10%). Therefore, the results of this study suggest that several processes working in tandem provide suitable habitat for buckwheat, but that it is likely that CaCO₃ is one of the most important factors for defining buckwheat habitat.

Calcite and/or other carbonate minerals exert a strong control on soil characteristics including but not limited to pH and micronutrient availability. The normal pH of calcic soils at equilibrium with atmospheric CO₂ is ~8.3 (Brady & Weil, 2008). Increased root respiration (soil P_{CO2}) (Marion et al., 2007) and/or the presence of organic matter can lower pH values (~ 7.0 to 8.0), whereas the presence of Na₂CO₃ can significantly raise pH values (~ 8.5 to 10.5) (Brady & Weil, 2008). In this study, pH values averaged for all horizons and across all sites ranged from approximately 6.6 to 8.3 using saturated paste, and 7.7 to 9.0 using 1:1 H₂O (typically, 1:1 H₂O > 1:2 CaCl₂ > saturated paste) (Tables 3-2 to 3-5). This range differs relatively little from the pH range found in non-habitat and "potential" habitat, (i.e. non-buckwheat sites). When considering only the horizon-specific data, buckwheat median pH values typically fall within 7.7 to 8.3. Non-buckwheat or non-habitat sites varied more widely in pH, with some medians lower, and others higher than the buckwheat soils. This, too, is consistent with the surficial geology of the study areas. Soils formed on evaporitic deposits containing Na will exhibit higher pH, whereas soils developed in sandy, well-drained alluvial terraces or washes should accumulate fewer salts, may

have higher organic matter contents due to the moisture regime, and thus can have lower pH values. Surfaces in which gypsum or other neutral salt minerals dominate may also have a lower pH (generally < 8.0). In summary, while buckwheat habitats fall within a set range of pH values consistent with calcic soils, non-buckwheat sites display a broader and more variable range of pH conditions indicative of many different soil properties.

Many nutrients become insoluble and unavailable to plants at pH values above 7.0, therefore plants growing in arid soils often experience deficiencies and/or use adaptive mechanisms to survive in these environments. The essential nutrients that were found to be statistically significant in this study and that become increasingly unavailable with increased pH values and CaCO₃ are: Zn, Cu, Fe, Mn, Co, K, P, Ni and B. Of these, Zn, Cu, Mn, Co, P and sometimes B follow the predicted behavior of being less available in the buckwheat habitats where CaCO₃ is increased (Tables 3-8 to 3-43 & summary Tables 3-48 to 3-50). However, the results for available Fe and Ni do not follow the expected trends and were found to be more available in the buckwheat soils (Tables 3-8 to 3-43). This result is completely unexpected and is discussed in detail later.

The availability of Zn, Cu, Fe, and Mn is so reduced in soils with pH values above 7.0, that these nutrients commonly cause deficiencies in plants not adapted to alkaline soils (Brady and Weil, 2008). In addition, calcareous soils have another mechanism that also decreases the availability of Cu, Zn, and Mo. These nutrients are also readily adsorbed by carbonate minerals (Mg-carbonates especially absorb Zn) and Fe or Mn oxides, which are also very common in alkaline, calcareous soils (Brady & Weil, 2008; Kabata-Pendias, 2011). Mn is highly insoluble at alkaline pH and under well-aerated, oxidizing conditions; and the lack of complexing organic compounds can also reduce Mn availability (Kabata-Pendias, 2011). Additionally, Fe and Mn are antagonistic and the increased available Fe at buckwheat sites can inhibit the uptake of Mn. Therefore, the lower available Mn at buckwheat habitats may inhibit other types of vegetation in these areas – and buckwheat may either have lower Mn requirements or may have adaptive mechanisms to grow well in soils high in Fe and low in Zn, Cu, and Mn.

Worldwide, K is one of the most limiting elements for plant growth – usually after N and P (Brady & Weil, 2008). Potassium plays an important role in helping plants adapt to environmental stresses, including drought, insects, fungal diseases and extreme temperatures (Brady & Weil, 2008). Potassium is derived from weathering of K-bearing minerals, particularly micas and feldspars. Once in solution, if not leached or taken up by plants, it commonly is held on the exchange sites of soil colloids, or is fixed in silicate clay minerals (Brady & Weil, 2008). Higher soil pH values tend to cause lower K availability due to increased fixation in colloids. Moreover, high levels of Ca⁺² and Mg⁺² in soils interfere with plant uptake of K⁺. In this study, available K is significantly greater for buckwheat sites for C horizons at Gold Butte, for the weighted B horizons at Coyote Springs, and in the weighted whole soil profiles for all sites combined and Coyote Springs (Table 3-48). The ratio K/(Ca+Mg) is considered a more accurate indication of available K was significantly *lower* for buckwheat sites in A horizons at Coyote

Springs, Gold Butte, and in all sites combined (Table 3-45). Therefore, the higher availability of Ca and Mg at buckwheat sites causes greatly reduced K availability and may be a critical limitation for non-buckwheat plant species.

Phosphorus is also increasingly unavailable with increased pH because it precipitates as Ca & Mg phosphate minerals that are not available to plants (Shariatmadari et al., 2006). Therefore, not surprisingly, P was less available in the buckwheat sites (see Tables 3-48d & 3-49d), which also contain increased CaCO₃, and available Ca, and Mg. Although it has been demonstrated that CaCO₃ can directly prevent the uptake of phosphorus by plants (Lajtha & Schlesinger, 1998), many plants, bacteria, and fungi have adapted mechanisms to make P more available in these soils by excreting organic acids that dissolve these phosphate minerals and allow uptake (Brady & Weil, 2008). It may be that in these low available P soils, Las Vegas buckwheat has an adaptive strategy that allows it to extract P where other plants cannot, or that it has lower P requirements. To make the issue even more complex, increased arsenic uptake is one side effect for plants growing in P-deficient soils (Baxter et al., 2008).

Arsenic is phytotoxic (Sheppard, 1992) and its chemical behavior is largely similar to that of P in soils (e.g. Fitz & Wenzel, 2002; Sturchio et al., 2011). Drohan & Merkler (2009) found mean arsenic concentrations of 412 mg kg⁻¹ in *E. corymbosum* tissues from North Las Vegas, Nevada, potentially corroborating the significantly greater buckwheat habitat arsenic values in B horizons at Coyote Springs and A horizons at Gold Butte (Tables 3-48b 3-48a). Although arsenic did not differ significantly between buckwheat and non-buckwheat sites at Bitter Spring, the mean available arsenic was higher in habitat compared to non-habitat, but lower than potential habitats (Table 3-4). Correspondingly, mean P was also lower at buckwheat sites (Table 3-4). Therefore buckwheat habitats at Bitter Spring have higher arsenic and lower P compared to nonhabitats. Because this situation occurs at all three study sites, it is possible that buckwheat has either a greater tolerance to arsenic uptake or decreased P requirements relative to other native plants in the region, and therefore is able to thrive in the habitats studied.

Boron is also commonly unavailable in arid soils, because it is increasingly adsorbed on Fe-oxides and silicate clays with increasing soil pH. In addition, plants that grow in soils with high Ca^{+2} , tend to need increased amounts of boron which further increases the potential for deficiencies (Brady & Weil, 2008). Although the levels between B deficiency and B toxicity are fairly narrow, B deficiency usually dominates in alkaline and calcareous soils. Soils developed on clay-rich marine or evaporite deposits are likely to contain high B contents (Shani et al., 2002; Kabata-Pendias, 2011), and the borate-rich mineralogy of the Thumb Member of the Horse Springs Formation is a perfect example of such substrates (Castor, 1993; Beard et al., 2007). As previously stated, the lack of research on nutrient dynamics in arid, non-agricultural soils makes interpretation of elemental data difficult, and boron is no exception. Agriculturally viable soils generally have total B values between 2 - 100 mg/kg (Atullah et al., 1999). As expected for non-agricultural soils, mean boron levels in this study were much lower. Boron was significantly lower in buckwheat sites at Bitter Spring and thus potentially important (Tables 3-48c & 3-49c). In contrast, available boron was significantly greater in weighted comparisons of B horizons at

Coyote Springs (Table 3-48a), and not significant at Gold Butte or in all sites combined (B is absent in Table 3-48b&d). These mixed results suggests that available boron may not be a direct factor in buckwheat distribution, at least pertaining to subsurface processes.

Cobalt in soils is typically sourced directly from weathered parent material, especially mafic or ultramafic igneous or metamorphic rocks, and is essential for fixing N in microorganisms (Kabata-Pendias, 2011). Cobalt is strongly absorbed to Fe & Mn oxides and this behavior is increased at higher pH (Han et al., 2002; Kabata-Pendias, 2011). Cobalt is also commonly bound or fixed to phyllosilicate clays (Brady and Weil, 2008). Cobalt deficiencies commonly occur in soils where the original geologic materials are low in Co, and in which Fe or Mn oxides and silicate clays are abundant. It is likely that geologic factors (geochemistry of parent materials, abundance of Fe & Mn oxides, and silicate clays) are primary controls behind lower available Co in buckwheat sites. While Co is known to be essential for N fixation by microorganisms, its role in higher plants is not yet certain (Pilon-Smits et al., 2009; Collins & Kinsel, 2011; Kabata-Pendias, 2011). Cobalt may help higher plants better resist drought and pathogens (Pilon-Smits et al., 2009). Other plants may have greater Co requirements than buckwheat and therefore do not grow in buckwheat habitat, or buckwheat may have mechanisms to increase Co uptake in these soils that other plants do not have or cannot utilize as successfully. Cobalt is thought to be absorbed into plant roots through passive transport, and that the same membrane carriers are used for Ni and possibly Fe (Pilon-Smits et al., 2009). Plants grown under reduced Fe availability were found to increase Co in their tissues because enhanced acidification of the rhizosphere increased uptake of Fe, as well as Co, Mn, and Zn (Baxter et al., 2008). Because so little is known about buckwheat nutrient uptake capabilities, requirements, tolerances, and/or toxicities, we can only speculate on possible parameters for buckwheat habitat based on our results.

Nickel is an essential element for plants, but most published research focuses on Ni toxicity in contaminated sites (Brady & Weil, 2008). Less is known about Ni deficiencies or specific plant requirements (Phipps et al., 2002). Except in anthropogenically polluted soils, Ni is derived from the parent material weathering, with greater abundances in basic igneous rocks and lesser amounts in sedimentary rocks (Kabata-Pendias, 2011). Nickel is strongly controlled by soil pH, and becomes unavailable with increasing pH (Tye et al., 2004). Nickel can also be absorbed to clays, and Fe or Mn minerals. Few data have been reported for available Ni concentrations in alkaline, calcareous soils. However, available Ni values in this study are an order of magnitude lower (Tables 3-2 to 3-5) compared to soils on non-ultramafic parent materials in Morocco that have reported values of 1 to 1.8 mg kg-1 (Ater et al., 2000). Because sedimentary parent materials, like those in our study, do contain lower amounts of Ni, it is difficult to know whether the available Ni in this study can be considered normal. Our results did show significantly greater amounts of available Ni in buckwheat habitats as compared to nonbuckwheat sites in all areas (see Table 3-48d). Nickel was significant less often in soils at Bitter Spring (Tables 3-48c and 3-49c), but absolute amounts of available Ni at Bitter Spring are very similar to soils in the other study areas. This suggests that there is similar overall Ni availability

at Bitter Spring, but that there are no significant differences between buckwheat and nonbuckwheat sites there. Overall, the repeated significance of Ni in buckwheat sites versus nonbuckwheat sites suggests that it may be an important variable in defining buckwheat habitat. Evidence for decreased Ni uptake by plants in the presence of available arsenic (Norton et al., 2010) makes understanding how Ni might influence buckwheat habitat even more complicated.

There was consistently more available Fe in buckwheat sites versus non-buckwheat sites in nearly all comparisons (Tables 3-48 and 3-49). This was unexpected because Fe deficiency is normally limiting in arid, calcareous soils. Iron can be a major component of the soil, but it is tied up in minerals that are insoluble in these environments. The higher available Fe was even more unexpected because buckwheat sites contained significantly more $CaCO_3$. Increased available Fe can inhibit the uptake by plants of Mn and other micronutrients. Normally, plants faced with low available Fe respond by increasing acidification of the rhizosphere (Marschner & Romheld, 1994; Kim & Guerinot, 2007), which not only increases the uptake and accumulation of Fe, but also Mn, Co, Zn, and Cd (Baxter et al., 2008). If the reverse holds true, and plants are growing in soils where Fe is relatively high (such as in our study), then it might be plausible that Mn, Co, and Zn may be even more difficult to obtain without also accumulating problematic quantities of Fe. Drohan and Merkler (2009) found high levels of Fe in buckwheat tissues in North Las Vegas, suggesting that buckwheat may either require increased Fe, or may tolerate increased Fe uptake in order to obtain vital Mn, Co, and Zn. In another study, Oyonarte et al. (2002) found consistently higher concentrations of Fe and lower concentrations of Mn in the rhizospheres of gysophile plants compared to nongypsophile plants. These complex relationships indicate the need to perform buckwheat tissue analyses in order to better interpret the chemical data of this study.

The lack of research on soil chemistry of highly calcareous soils hinders our ability to interpret the magnitude and ranges of available Fe in our study. Oyonarte and Sanchez (2002) summarize some available Fe contents for gypsiferous soils, and report values between 2.5 and 4.5 ug g⁻¹ and mean values of 3.1 ug g^{-1} (gypsiferous soils) and 2.5 ug g⁻¹ (non-gypsiferous soils). Soils in this study have mean values that are an order of magnitude greater (Tables 3-2 to 3-5). These very high Fe concentrations indicate the need for us to consider additional factors that could be affecting our results.

All methods to measure plant available nutrients are designed to mimic the various biochemical processes that plants use to gain necessary nutrients from the soil, however, no standard method currently exists to measure plant available ions specifically for arid soils. In general, there is a problematic lack of accurate laboratory procedures to measure arid soil chemical and physical characteristics because arid environments were, until recently, seen as unimportant and/or have received little scientific study (compared to more humid agricultural or forest lands). Arid soils are difficult to analyze properly because they commonly contain or are entirely comprised of soluble mineral phases (CaCO₃, gypsum, and other soluble salts) that can readily dissolve during chemical or physical analysis. Consequently, the resulting data may or may not accurately reflect "real" soil characteristics. Moreover, nearly all traditional soil

laboratory methods purposely remove $CaCO_3$ and soluble salts so that they do not interfere with results (Soukup et al., 2008). Clearly, removing the very materials that make up an arid soil and define its physical and chemical properties will not yield accurate or meaningful data, and will complicate interpretation of key soil processes. Most traditional soil laboratory procedures cannot be applied to arid soils without fundamental problems, especially if applied without due consideration of how the target variable is influenced by arid soil genesis.

Given these challenges, the Mehlich No. 3 method (Burt, 2004, method 4D6) was chosen to measure available nutrients in this study because it was deemed most likely to accurately represent nutrient dynamics in the study areas, and because it provides a basis for comparison between this study and other published soil data. The Mehlich No. 3 method uses solutions of acetic acid, ammonium nitrate, nitric acid, ammonium fluoride and EDTA (see: http://www.ncagr.gov/agronomi/meh3.htm) to assess nutrient pools including the soil solution, exchangeable ions, and portions of the adsorbed or complexed ion pool (Cancela et al., 2002). Research regarding the Mehlich No. 3 method has primarily been done on neutral and acidic soils used in agriculture. However, some studies have tested the use of the Mehlich no. 3 method for soils that have alkaline pH values and carbonate (e.g. Schmisek et al., 1997; Zbiral, 2000; Cancela et al., 2002). Overall the Mehlich no. 3 method has been reported to be very effective in measuring plant-available nutrients in alkaline, neutral and acidic soils but the vast majority of examples of alkaline soils are those with significantly less calcium carbonate than in our study (e.g. Mallarino, 1997; Schmisek et al., 1997; Cancela et al. 2002; Vidal-Vazquez et al., 2005; Kabata-Pendias, 2011). Most studies using the Mehlich No. 3 method have been performed specifically to measure available P for soil management purposes on agricultural soils. These studies compare the results of older methods to the Mehlich No.3 method to determine which methods give the most consistent and comparable data. Schmisek et al. (1997) reported that the Mehlich No. 3 method correlated well with other soil methods for P, K and Zn values in North Dakota soils with pH values 7.0 to 8.3, but did not correlate well for Fe and Mn. Novillo et al. (2002) reported that the method may overestimate Zn availability in calcic soils. Most researchers do not attempt to explain why different methods yield different results, but alkaline pH values nearly always produce poor correlations among different methods (Mallarino, 1997; Zbiral, 2000; Cancela et al., 2002).

Based on this information, we hypothesized that the unexpected correlation of increased Fe with high-CaCO₃ buckwheat soils could best be explained by acid dissolution during the Mehlich No. 3 procedure. We believe these acids preferentially dissolved Fe, either from within the crystalline structure of Fe-bearing carbonate (e.g. Ankerite – see XRD Tables) from within the lattices of more soluble minerals, or off of adsorption sites on mineral surfaces. As intended by the method, this artifact of the laboratory process may actually mimic processes acting in nature. It is widely known that plants have several mechanisms to increase mineral dissolution and thereby gain essential nutrients (Marschner, 1995). Dissolution of CaCO₃ by plants in soils is well known and actually utilized as a mechanism to remediate saline-sodic and sodic soils by replacing Na⁺ on the exchange sites with Ca⁺² (Qadir et al., 2007). Because this method was used

consistently on all soil samples, and because it likely mimics acidifying processes in the rhizosphere, we feel that the statistical relationships presented in this study are accurate. The absolute values (magnitude) of available nutrients, however, may or may not reflect values in the rhizosphere, which are both site and species dependent.

Spearman's rho correlation tests were intended to help elucidate what processes might cause the significant geochemical relationships identified in this study. Specifically, because of the consistent, significantly higher $CaCO_3$ and available Fe in buckwheat sites, we performed correlation tests for these two variables against all measured chemical values, and considered data grouped by study area, profile, and genetic horizon (Tables 3-51 to 3-110).

When comparing data for all study areas combined, buckwheat habitats, non-habitats, and potential habitats all exhibited moderate to strong positive correlations between available Fe and CaCO₃ (see Tables 3-63 to 3-66). In fact, the strongest correlations were found in the potential habitat sites (Table 3-66). When comparing specific sites, the correlations between available Fe and CaCO₃ varied, but were all moderate to strongly positive. Additionally, Ni was always strongly correlated to Fe, suggesting that these elements may share a common or similar mineral source(s). XRD data reveal dolomite and/or ankerite as common soil components (Table 3-6). These minerals reflect a variable range of substitution for Ca within the carbonate crystal lattice – in dolomite, (CaMg(CO₃)₂) Mg substitution dominates, while in Ankerite (Ca(Fe,Mn,Mg)(CO₃)₂), Fe⁺², Mn⁺², and Mg⁺² all substitute variably for Ca⁺². These data suggest that carbonate minerals, likely derived from Paleozoic bedrock in the upper watersheds surrounding each study area (Beard et al., 2007; Chapter 2) constitute the most likely source of Mg, and sometimes, Fe in our study areas.

Variability in the data between different sites and soil horizons suggests that there may be different mineral phases and/or soil processes supplying Fe (and Ni) to variable degrees (Table 3-6). Relationships between available Fe & Mg, and Fe & Ca were investigated as a way to estimate potential mineral sources of available Fe. Based on XRD data, we assume that the major sources of Mg in all soils in this study are carbonate minerals (e.g. dolomite, ankerite, high Mg-calcite). In contrast, available Ca may come from many sources including carbonate minerals, gypsum and other sulfate minerals, and possibly other soluble salts. Therefore strong correlations between Mg and Fe could suggest that the primary mechanism supplying available Fe is the carbonate mineral (e.g. ankerite) dissolution, whereas a low or negative correlation of Mg & Fe could suggest Fe (or Mg) is being sourced from other minerals. Geochemical data on the Fe-and Mg-containing minerals is needed to support this assumption, but given the current dataset, this is a reasonable interpretation. Additionally, we tested for correlation between available Fe and variables associated with gypsum or other soluble salts (SO₄, electrical conductivity, Na, Cl, NO₃) to elucidate other possible mineral controls on Fe availability.

At Coyote Springs, available Fe strongly correlated to SO_4 and EC in B horizons and exhibited a strong negative correlation to Mg. These correlations are not present in non-habitat or potential habitat sites and suggest that the greater available Fe in habitat may be due to direct or indirect processes related to the presence of soluble salts. Negative correlation to Mg also suggests that available Fe is not being derived from Mg-carbonate minerals (e.g. ankerite), and/or that it is being derived from other (as yet unidentified) Fe-bearing minerals. The strong negative correlation between Fe and Mg suggests that one or more processes are occurring in which Fe is preferentially going into solution, whereas Mg is not. This would explain the increased available Fe in these horizons at this site. Similarly, available Fe strongly correlated to soluble salts in all habitat classes in the Bitter Spring area, again suggesting that Fe availability is tied to the presence and amount of soluble salts at this study area as well. In fact, it may be the wide distribution of soluble salts at Bitter Spring, both in buckwheat and non-buckwheat habitats, that renders Fe so available at all sites here such that there were no significant differences in available Fe between habitat classes (Fe is absent in Tables 3-48c to 3-50c). Additionally, Fe displayed a strong negative correlation to Mg in the A horizons of buckwheat habitats at Bitter Spring, which suggests that Mg-carbonate minerals are not a likely source for soluble Fe in this horizon and/or one or more processes are operating which increase Fe solubility and decrease Mg. This changes abruptly in the B horizon, where available Fe is strongly correlated to Mg (Table 3-92b). However, this B horizon is one of the rare instances where buckwheat/habitat sites exhibited significantly increased SO₄ as compared to non-habitat (Table 3-48c). Combining these results suggests that soluble salts play an important role – either directly or indirectly – in providing increased available Fe at Coyote Springs and Bitter Spring buckwheat habitats.

Buckwheat habitats at Gold Butte have both more CaCO₃ and available Fe in A and C horizons and more CaCO₃ in B horizons (Table 3-48b). Although not significant in B horizons, the absolute values of available Fe are still very high. Available Fe did not correlate with soluble salts in the soil data (e.g., Table 3-56b), but there was a strong negative correlation to EC in the surface data (see Chapter 4). Despite the lack of correlations between Fe and soluble salts, soils at Gold Butte exhibited similar ranges of available Na, Cl, SO₄, Fe, Mg, and Ni, although slightly lower minimum values overall (Tables 3-2 to 3-5). All habitat classes at Gold Butte have strong positive correlations between Fe and CaCO₃, suggesting that Fe-carbonate minerals probably are the most likely source for available Fe.

Overall, strong positive correlations exist between Fe-Ni, Fe-Mg, Fe-As, Fe-CaCO₃, and Fe-K. These associations as well as the mining and mineral exploration in this region indicate that parent materials in these soils have likely undergone some amount of hydrothermal alteration and/or diagenesis. More research is needed to determine the mineral sources(s) of the available nutrients at these sites, but diagenic and hydrothermal alteration commonly increase Fe, Ni, Mg, As, other heavy metals, and K in carbonate phases (e.g. Boyle & Jonasson, 1973; Beratan, 1999). Less clear are the soil-processes that might be providing a mechanism for dissolution of Fe-Mg-carbonate minerals.

Carbonates in arid environments are highly insoluble because soil solutions are saturated or supersaturated in CaCO₃ (e.g. Marion et al., 2007). Due to the common ion effect, Caphosphate minerals are also highly insoluble, which helps explain why P has such low availability in calcareous soils. Dissolution of carbonate minerals in these soils is limited to only the very uppermost few centimeters where rainwater has not yet become saturated in $CaCO_3$ (McFadden et al., 1998). At greater depths, other mechanisms must operate in order to dissolve these minerals. The strong correlation of available Fe to soluble salt minerals (EC, Cl, Na, SO₄, NO₃) may indicate a mechanism in which these Fe-Mg-carbonate minerals can more easily dissolve in these highly calcareous soils.

The presence of gypsum and/or other soluble salt minerals, which are more soluble than $CaCO_3$ – especially in $CaCO_3$ -saturated environments – may provide Fe through the following processes:

- (1) Directly via salt mineral dissolution if Fe is absorbed on the mineral or present in the mineral structure.
- (2) By providing microsites with lower pH in areas where soluble salts have concentrated. Such concentrations of soluble salts are a common phenomenon caused by pedogenic processes (e.g. Buck & Van Hoesen, 2002; Buck et al., 2006). Pore spaces in these areas are less likely to be in equilibrium with CaCO₃, therefore essentially diluting the effects of CaCO₃, and lowering pH.
- (3) By concentrating water in these microsites. Salt minerals are hygroscopic and attract and hold water more tightly than surrounding silicate minerals (e.g. Buck and Van Hoesen, 2002, Dong et al., 2007). As such, areas of concentrated gypsum or other soluble salt minerals will have a greater ability to attract and hold pore waters as compared to other areas in the soil. Increased water will increase the potential for dissolution of soluble minerals. It will likely also attract roots and other organisms to these areas (e.g. Buck and Van Hoesen, 2002; Dong et al., 2007).
- (4) By changing pore water chemistry to increase solubility of Mg-Fe-Ni-carbonate or other minerals. Concentrations of pedogenic salts will have pore waters saturated with ions from the surrounding salt minerals (ex; Na, Cl, Ca, SO₄, etc.). These pore waters are very likely to be significantly lower in bicarbonate, and therefore the common ion effect is less likely to be present such that Mg-Fe-Ni-carbonates will become more soluble. The common ion effect decreases the solubility of substances that have a common ion between them. So, for example, calcite (CaCO₃) will become less soluble in the presence of gypsum (CaSO₄ · H₂O), because both minerals share the common ion: Ca.

Of these, the latter two mechanisms are probably the most likely to increase carbonate mineral dissolution and increase Fe (and Ni) availability in buckwheat habitats. The second mechanism (lowering pH) may also be important, especially if plants are able to utilize these microsites to decrease the energy required in obtaining necessary micronutrients through acid excretion or other mechanisms.

Halite (NaCl) is present in this study, and some soils have significantly high concentrations. Na commonly correlated to available Fe throughout all sites, and in some cases Na & Cl were strongly correlated. This is a strong argument for NaCl concentrations greatly

enhancing the latter two mechanisms for Fe-Mg-carbonate mineral dissolution. It is much less likely that the first mechanism (salt mineral dissolution) plays a large role in this study area at least for Fe and Ni because Fe-Ni-sulfate minerals could only form in these soils if pyrite was present (e.g. Mrozek et al., 2006). Currently there is no data to suggest the presence of pyrite in the shallow surface soils studied herein.

Overall, without additional mineralogical data, the results suggest that at Bitter Spring and Coyote Springs, available Fe (and Ni) may be sourced either directly from, or as a result of soil environmental changes caused by, gypsum, halite, and/or other soluble salt mineral phases that enhance the dissolution of ankerite or other Fe-containing minerals. Results are less clear at Gold Butte for the subsurface horizons, but indicate that at the surface A horizon, available Fe (and Ni) are likely sourced from carbonate minerals. Interestingly, Gold Butte soils also exhibit a strong positive correlation between CaCO₃ and arsenic. If buckwheat plants are actively dissolving carbonate minerals to obtain their required Fe and Ni, they would also be exposing themselves to significantly increased available arsenic.

Interestingly, total N and/or NO₃ were found to be lower in buckwheat sites than in nonbuckwheat sites for all areas except Gold Butte (Table 3-48). Nitrogen is a vital nutrient for plants and an essential component of protein (Brady & Weil, 2008). As such it can be a major limiting nutrient. We note that although total N was measured, our sampling procedures did not allow the cold storage and prompt analyses necessary for accurate measurement of NH₄. Thus, total N values in this study are probably lower than actual values because NH₄ could have volatilized prior to N analysis. Organic N is likely to be minimal except possibly for some A horizons with increased organic matter (especially under canopies - see Chapter 4). Nitrate is highly soluble and is usually quickly leached within the soil depending upon the amount of effective precipitation and soil infiltration/permeability (e.g. Graham et al., 2008). The lower values of total N and NO₃ in buckwheat sites may partially reflect the lack of well-developed vesicular horizons and desert pavement at buckwheat sites (see Chapters 2 & 4). Vesicular horizons restrict water infiltration and therefore significantly decrease leaching such that even highly soluble NO₃ salts can accumulate (Graham et al., 2008). Smaller plant canopy size, foliar density, or vegetation density within buckwheat sites may also reduce the recycling and availability of nitrogen in organic matter. These topics are addressed in greater detail in our analysis of soil surface characteristics (Chapter 4).

Lastly, water is considered to be the most limiting factor for vegetation in the Mojave Desert (Turner & Randall, 1989; Smith et al., 1997). As such, there is a high probability that soil moisture plays an important role in determining buckwheat habitat. As mentioned previously, gravimetric water content is overestimated when hydrous minerals (e.g. gypsum) are present. Moisture values in this study may also reflect bias due to the timing of sample collection, and the unusually high precipitation levels received in early 2010. Therefore, soil moisture trends in this dataset are not especially useful and cannot be used to interpret differences regarding buckwheat habitat. Observations of topography and surface crusts during geomorphic mapping (Chapter 2) suggest that in general, many buckwheat sites are likely to receive less effective precipitation

versus non-buckwheat sites because of increased runoff and decreased infiltration. Additional research is needed to better quantify the changes in surface and subsurface hydrologic processes (e.g., infiltration rates, average water holding capacity, etc.) within buckwheat and non-buckwheat sites at each of the three study areas.

V. Conclusions

Chemical and physical analyses of 97 soil profiles at Coyote Springs, Bitter Spring and Gold Butte revealed that buckwheat habitats have significantly increased available Fe, Ni, Ca, Mg, and CaCO₃. Buckwheat sites also have significantly decreased available P, Co, Mn, Zn, Cu and N (or NO₃). Although Las Vegas buckwheat has been suggested as a gypsophile, we only found SO₄ to be significantly greater in two general cases: C horizons at Gold Butte and B horizons at Bitter Spring. Arsenic was found to be significantly higher in A horizons at Gold Butte and B horizons of Coyote Springs, Boron was found to be significantly greater in B horizons of Coyote Springs, and lower in all comparisons except A horizons at Bitter Spring. Ratios of K:(Ca + Mg), which are considered a better indication of available K, were found to be significantly lower in A horizons at Coyote Springs, Gold Butte, and for all study areas combined. Ratios of Ca:Mg are highly variable and suggest that Mg may not be an important indicator of buckwheat habitat.

Alkaline pH values and significant CaCO₃ in buckwheat habitat can explain the decreased P, Co, Mn, Zn, and Cu also found in these soils. These nutrients are strongly controlled by pH and/or absorption by CaCO₃. However, Fe (and Ni) in buckwheat habitats should also be less available. This increased availability is believed to be due to increased dissolution of Fe-carbonate minerals or minerals in which these elements are absorbed. Dolomite and ankerite are likely sources for the increased available Fe (and Ni). However, these minerals are not normally very soluble in these CaCO₃-saturated environments. Without additional mineralogical or plant tissue data, our results suggest that the high Fe (and Ni) may come either directly from, or as a result of soil environmental changes caused by gypsum and/or other soluble salt mineral phases that enhance carbonate mineral dissolution. Interestingly, Gold Butte soils also have a strong positive correlation between CaCO₃ and arsenic. Dissolution of carbonate minerals here may expose buckwheat plants to increased available arsenic.

In summary, because so little is known about buckwheat nutrient uptake capabilities, requirements, tolerances, and/or toxicities, we can only speculate on possible abiotic parameters for buckwheat habitat based on our results. The results of this study suggest that buckwheat: (1) prefers calcareous soils with higher available Fe, Ni, Ca, and Mg (although Ca:Mg ratios suggest Mg may not be an important indicator); (2) may be more tolerant of high arsenic; (3) may have lower requirements for P, Co, Mn, Zn, Cu, K, and N; or may have mechanisms, including symbiotic relationships with mycorrhizae or other organisms, to obtain these elements from soils in which they are poorly available. Although we found few significant correlations between buckwheat sites and SO₄, we believe that the higher availability of Fe in buckwheat soils is very likely due to localized occurrences of gypsum, halite and/or other soluble salts in the subsurface.

Therefore, although the data in this study do not support the interpretation of the Las Vegas Buckwheat as a gypsophile, gypsum, halite and other soluble salts in these highly calcareous soils may, through indirect processes, be critical for buckwheat survival.

VI. Recommendations

- We note that this study greatly benefitted from the inclusion of three spatially distinct study areas, and that our results would have been incomplete or potentially misleading had only one study area been selected. We encourage a similar approach for future research on the Las Vegas Buckwheat or other restricted habitat species.
- We strongly recommend analysis of buckwheat tissue chemistry at the same sites as this study. This would help confirm whether variables found to be significant in this study reflect general soil environmental requirements, or instead whether they reflect specific plant nutrient requirements. Data that would enable comparison of buckwheat physiology and chemistry to that of spatially associated species might also improve our understanding of edaphic controls on habitat viability.
- We also recommend laboratory analysis of total soil chemistry (only plant available chemistry was measured in this study). Total chemical analysis would shed light on the geologic variables between study areas and between buckwheat and non-buckwheat sites. These analyses should be performed on archived samples from this study so that accurate comparisons of results can be made. In addition, more detailed mineralogical analyses would greatly assist in determining the sources of plant nutrients, and therefore help to interpret processes controlling nutrient availability and constraining parameters for probable buckwheat habitats elsewhere.

References

- Ater, M., Lefebvre, C., Gruber, W., and Meerts, P., 2000. A phytogechemical survey of the flora of ultramafic and adjacent normal soils in North Morocco. Plant and Soil 218: 127-135.
- Atullah, R., An, B., Salim, M., 1999. Plant utilization and release of boron distributed in different fractions in calcareous soils. Arid Soil Research and Rehabilitation, 14: 293-303.
- Baxter, I., Vitek, O., Lahner, B., Muthukumar, B., Borghi, M., Morrissey, J., Guerinot, M.L., and Salt, D., 2008. The leaf ionome as a multivariable system to detect a plant's physiological status. Proceedings of the National Academy of Sciences of the United States of America 105:33: 12081-12086.
- Beard, L.S., Anderson, R.E., Block, D.L., Bohannon, R.G., Brady, R.J., Castor, S.B., Duebendorfer, E.M., Faulds, J.E., Felger, T.J., Howard, K.A., Kuntz, M.A., and Williams, V.S., 2007. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona. USGS OFR 2007-1010.
- Beratan, K., 1999. Miocene potassium metasomatism, Whipple Mountains, southeastern California: A datable tracer of extension-related fluid transport. Geology 27: 259-262.
- Boyle, R., and Jonasson, I., 1973, The geochemistry of arsenic and its use as an indicator element in geochemical prospecting, Journal of Geochemical Exploration, 2:251-296.
- Brady, N.C., and Weil, R.R., 2008. The Nature and Properties of Soils (14th Edition, revised). Prentice Hall. 980 pages.
- Brock, A.L. and Buck, B.J., 2009. Polygenetic development of the Mormon Mesa, NV petrocalcic horizons: Geomorphic and paleoenvironmental interpretations. Catena, 77: 65-75.
- Burt, R., Ed., 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 4.0. United States Department of Agriculture, Natural Resources Conservation Service. 700 pages.
- Buck, B.J., and Van Hoesen, J.G., 2002. Snowball Morphology and SEM Analysis of Pedogenic Gypsum, southern New Mexico, Journal of Arid Environments: v.51, 469-487.
- Buck, B.J., Wolff, K., Merkler, D., and McMillan, N. 2006, Salt Mineralogy of Las Vegas Wash, Nevada: Morphology and Subsurface Evaporation, Soil Science Society of America Journal, 70: 1639-1651.
- Cancela, R.C., de Abreu, C.A., and Paz-Gonzalez, A., 2002. DTPA and Mehlich-3 micronutrient extractability in natural soils. Communications in Soil Science and Plant Analysis. 33(15-18): 2879-2893.
- Castor, S.B., 1993. Borates in the Muddy Mountains, Clark County Nevada. Nevada Bureau of Mines and Geology Bulletin 107.
- Collins, R.N. and Kinsel, A.S., 2011. Pedogenic factors and measurements of the plant uptake of cobalt. Plant and Soil (2011) 339: 499-512.
- Dixon, J.B. and Weed, S.B., eds., 1989. Minerals in soil environments, 2nd edition. SSSA Book Series 1. Madison, Soil Science Society of America. 1244 pages.

- Dong, H., Rech, J.A., Jiang, H., Sun, H., and Buck, B.J., 2007, Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. Journal of Geophysical Research 112, G02030, doi:10.1029/2006JG000385.
- Drohan, P.J. and Merkler, D.J., 2009. How do we find a true gypsophile? Geoderma 150 (1-2): 96-105.
- Essington, M.E., 2004. Soil and Water Chemistry: An Integrative Approach. United States: CRC Press. 534 pages.
- Fitz, W.J., and Wenzel, W.W., 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology 99: 259-278.
- Fontes, R.L. and Coelho, H.A., 2005. Molybdenum determination in Melhlich-1 and Mehlich-3 soil test extracts and Molybdenum adsorption in Brazilian Soils. Communications in Soil Science and Plant Analysis 36: 2367-2381.
- Gile, L.H., Peterson, F.F., and Grossman, R.B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science, 101(5): 347-360.
- Gile, L.H., Hawley, J.W., and Grossman, R.B., 1981. Soils and geomorphology in the Basin and Range area of Southern New Mexico - Guidebook to the Desert Project. Socorro, University of New Mexico. 222 pages.
- Graham, R.C., Hirmas, D.R, Wood, Y.A., and Amrhein, C., 2008. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36 (2): 259–262.
- Han, F.X., Banin, A., Kingery, W.L., and Li, Z.P., 2002. Pathways and kinetics of redistribution of cobalt among solid-phase fractions in arid-zone soils under saturated regime. Journal of Environmental Science and Health A37 (2): 175–194.
- Jackson, M.L., 1965. Soil chemical analysis: Advanced Course. Published by the author. Dept. of Soil Science, University of Wisconsin, Madison.
- Jin, J., Martens, D.C., and Zelazny, L.W., 1987. Distribution and plant availability of soil boron fractions. Soil Science Society of America Journal 51: 1228-1231.
- Kabata-Pendias, A., 2011. Trace elements in soils and plants, 4th Ed. New York: CRC Press. 505 pages.
- Kim, S.A., and Guerinot, M.L., 2007. Mining iron: Iron uptake and transport in plants. FEBS Letters 581: 2273-2280.
- Kunze, G.W. and Dixon, J.B., 1986. Pretreatment for mineralogical analysis. IN: Klute, A., ed. Methods of soil analysis part 1: Physical and mineralogical methods, 2nd edition. Agronomy Monograph 9. Madison, Soil Science Society of America: 91-100.
- Lafuente, A.L., Asenjo, I.V., del Castillo Garcia, B., and Huecas, C.G., 2001. Dynamics of alkali and alkaline-earth cations in semi-arid environment of northern Spain. Commun. Soil Sci. Plant Analy. 32(11&12): 1943-1957.

- Lajtha, K. and Schlesinger, W.H., 1988. The effect of CaCO₃ on the uptake of phosphorous by Two Desert Shrub Species, *Larrea tridentata* (DC.) Cov. and *Parthenium incanum* H. B. K. Botanical Gazette, 149 (3): 328-334.
- Mallarino, A., 1997. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. J. Prod. Agric. 10(1): 163-167.
- Marion, G.M., Verburg, P., Stevenson, B., Arone, J., 2007, Soluble element distributions in a Mojave Desert Soil. Soil Science Society of America Journal, 72 (6): 1815-1823.
- Marschner, H., 1995, Mineral nutrition of higher plants, Academic Press, London.
- Marschner, H. and Romheld, V., 1994. Strategies of plants for acquisition of iron. Plant and Soil. 165: 261-274.
- McBride, M., 1994. Environmental Soil Chemistry. New York: Oxford University Press. 406 pages.
- McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J., and Forman, S.L., 1998. The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change. Geomorphology 24: 101-145.
- Moore, D.M. and Reynolds, R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals (2nd edition).New York, Oxford University Press. 378 pages
- Mrozek, S.J., Buck, B.J., Drohan, P., and Brock, A.L., 2006, Decorative Landscaping Rock as a Source for Heavy Metal Contamination, Las Vegas NV, Soil and Sediment Contamination, 15: 471–480.
- Norton, G., Dasgupta, T., Islam, M.R., Islam, S., Deacon, C., Zhao, F., Stroud, J., McGrath, S., Feldmann, J., Price, A., and Meharg, A., 2010. Arsenic influence on genetic variation in grain trace-element nutrient content in Bengal Delta grown rice. Environ. Sci. Technol. 44: 8284-8288.
- Novillo, J., Obrador, A., Lopez-Valdivia, L.M., and Alvarez, J.M., 2002. Mobility and distribution of zinc forms in columns of an acid, a neutral, and a calcareous soils treated with three organic zinc complexes under laboratory conditions. Australian Journal of Soil Research. 40: 791-803.
- Oyonarte, C., and Sanchez, G., 2002. A comparison of chemical properties between gypsophile and nongypsophile plant rhizospheres. Arid Land Research and Management 16:47-54.
- Phipps, T., Tank, S., Wirtz, J., Brewer, L., Coyner, A., Ortego, L., and Fairbrother, A., 2002. Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ. Rev. 10: 209-261.
- Pilon-Smits, E.A.H., Quinn, C.F., Tapken, W., Malagoli, M., and Schiavon, M. et al., 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology 12: 267–274.
- Poppe, L.J., Paskevich, V.F., Hathaway, J.C., and Blackwood, D.S., 2001. A laboratory manual for X-Ray powder diffraction. U.S. Geological Survey Open-File Report 01-041.
- Qadir, M., Oster, J., Schubert, S., Noble, A., and Sahrawat, K., 2007. Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy. 96: 197-247.

- Schmisek, M.E., Cihacek, L.J., and Swenson, L.J., 1998. Relationships between the Mehlich-III soil text extraction procedure and standard soil test methods in North Dakota. Communications in Soil Science and Plant Analysis. 29(11-14): 1719-1729.
- Schoenenberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D., Eds., 2002. Field book for describing and sampling soils, Version 2.0. Natural Resources Conservation service, National soil Survey Center, Lincoln, NE.
- Shani, U., Dudley, L.M., and Hanks, R.J., 2002. Model of boron movement in soils. Soil Science Society of America Journal 56: 1365-1370.
- Shariatmadari, H., Shirvani, M., and Jafari, A., 2006. Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma 132: 261–272.
- Sheppard, S.C., 1992. Summary of phytotoxic levels of soil arsenic. Water, Air, and Soil Pollution 64: 539-550.
- Smith, S.D., Monson, R.K., and Anderson, J.E., 1997. Physiological ecology of North American desert plants. Springer-Verlag, Berlin.
- Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th Ed. USDA-Natural Resources Conservation Service, Washington, DC.
- Soukup, D.A., Buck, B.J., and Harris, W., 2008. Preparing soils for mineralogical analysis. In: Ulery, A. and Drees, R., eds. Methods of soil analysis, Part 5: Mineralogical methods. SSSA Book Series No. 5. Madison, Science Society of America: 13-31.
- Sturchio, E., Boccia, P., Meconi, C., Zanellato, M., Marconi, S., Beni, C., Aromolo, R., Ciampa, A., Diana, G., and Valentini, M., 2011. Effects of arsenic on soil-plant systems. Chemistry and Ecology 27: 67-87.
- Tan, K.H., 1996. Soil sampling, preparation, and analysis. New York: Marcel Dekker, Inc. 408 pages.
- Turner, F.B, and Randall, D.C., 1989. Net production by shrubs and winter annuals in southern Nevada. Journal of Arid Environments 17: 23-36.
- Tye, A., Young, S., Crout, N., Zhang, H., Preston, S., Zhao, F., and McGrath, S., 2004. Speciation and solubility of Cu, Ni, and Pb in contaminated soils. European Journal of Soil Science 55: 579-590.
- Vidal-Vazquez, E., Caridad-Cancela, R., Taboada-Castro, M.M., and Paz-Gonzalez, A., 2005. Trace elements extracted by DTPA and Mehlich-3 from agricultural soils with and without compost additions. Communications in Soil Science and Plant Analysis. 36: 717-727.
- Zbiral, J., 2000. Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants. Communications in Soil Science and Plant analysis, 31 (19-20): 3037-3048.

Chapter 4: Surface Characterization & Statistics

Brenda J. Buck, Colin R. Robins, and Amanda J. Williams

I. Purpose

Soil surface characteristics can impose important controls upon the germination, establishment, growth dynamics, and survival of plant species, especially in gypsum soils of the Mojave Desert (see Chapter 1). In particular, characteristics such as biological soil crust cover, physical soil crust cover, rock fragment cover, surface soil chemistry, canopy type, and other factors all bear consideration when attempting to define species-specific habitats. It would be impossible to elucidate relationships between buckwheat and gypsum soils, let alone to more precisely define viable buckwheat habitat, with the current, near-total lack of data on soil chemistry and surface characteristics in buckwheat habitat. Many of these important factors were beyond the scope of this study, but should be an important focus for future research projects. In this study, we focused solely on the soil surface chemistry and a set of other surface components such as rock clasts, biological soil crusts (limited types), and plant litter. The objective of the characterization study described here was to determine whether surface soil chemistry or other surface components influence population distributions of E. corymbosum var. nilesii in Clark County soils. Significant trends found in these data should (1) further our understanding of soil chemical differences between buckwheat canopy dynamics and other vegetation, (2) potentially shed light on germination processes, (3) contribute to interpretation and/or understanding of subsurface soil chemistry and processes (see Chapter 3); and (4) assist in defining surface characteristics that could potentially be used to model or predict buckwheat habitat (e.g. Chapter 2).

II. Methodology

Surface Categorization & Characterization

Soil surfaces were classified into one of three categories according to vegetative cover or lack thereof: (1) under canopy, (2) buckwheat canopy, and (3) interspaces (Figure 4-1). Areas classified as "under canopy" (UC) consist of all ground surfaces directly underlying the branches and leaves of any plant besides *E. corymbosum* var. *nilesii*. These areas extend from the most distal branch or leaf tips to the principle trunk stem(s) of the plant, and can consist of multiple plant species inter-grown within one shrub "island". Dead but standing shrubs were also categorized as "canopy". The "buckwheat canopies" category (BW) is similar to "under canopy" but occurs only underneath *E. corymbosum* var. *nilesii*. Buckwheat canopies only infrequently included other species in addition to the buckwheat, such as grasses, growing underneath buckwheat. The interspaces (IN) category is defined as any unvegetated soil surface between plant canopies, and can be comprised of bare soil or sand, well-developed desert pavement, and/or thin silty physical or biological surface crusts.

Figure 4-1: Illustration of surface cover classes, and distinct sampling/data analysis strategies for surface and horizon samples.

We used a plastic grid to collect 125 point counts of surface characteristics under each canopy type present at each site. Twenty-five 1 cm² observation holes, laid out in a numbered 5 x 5 grid, were cut from a plastic mesh square 25 cm on each side (Figure 4-2). The numbered observation holes were ~ 2.5 cm apart. For each canopy class, five distinct observation locations were randomly selected by the survey team. In some cases, there were fewer than five distinct buckwheat individuals or five distinct non-buckwheat plants in a site, and in those instances data were collected from all available canopy locations for a smaller point count total. To normalize comparisons between all sites and all canopy types, all raw point count tallies were converted to percentages. Because soil surface characteristics can include several distinct components even within the space of 1 cm², the precise spot for each observation was determined using a 2 mm diameter pointer. Prior to conducting the point counts, survey team members were trained to recognize all locally represented rock types, most biological soil crust types (for lichens, to the genus level), vegetation types, and surficial geologic map units. Table 4-1 lists the soil surface components sought in this study.

Figure 4-2: Illustration of the surface point count method and observation/sampling grid.

Soil Sampling & Analysis

Soil samples were collected from each of the three canopy cover classes, when present. One soil sample was collected from the uppermost 3-4 cm of soil at three randomly chosen locations within each class; these three aliquots were combined into one sample bag and homogenized for laboratory analysis. We collected a total of 223 surface samples: 74 from Coyote Springs, 82 from Gold Butte, and 67 from Bitter Spring. Laboratory analyses performed on surface samples followed the same procedures as the soil profile/horizon analyses described in Chapter 3.

Statistical Analysis

Statistical analysis of surface characteristics incorporated transect and point count data, the results from laboratory chemical analysis of soil samples, and attributes from GIS data sets. A complete list of the variables considered are displayed in Table 4-1. In addition, several composite classes were created for linked or similar variables, especially those pertaining to surface clasts and biological soil crusts (Table 4-2). These composite classes were intended to emphasize potential relationships that might not otherwise have been detected by statistical analysis when spread out among separate variables. For example, the composite class "AllRock" includes all observed clast lithologies, including chert, quartzite, limestone, and rock gypsum. Although these distinct rock types behave differently in terms of their chemical influences, rock fragments, regardless of composition, may collectively exert an identical physical influence on plant-soil dynamics.

T-tests, including both non-parametric paired t-tests and also independent sample t-tests, were used to quantify differences in soil surface characteristics between buckwheat presence/absence and habitat classes (defined in Chapter 2). All t-tests were conducted at the 0.05 significance level in IBM SPSS Statistics 19. Mann-Whitney U Tests were used as a nonparametric alternative to the independent samples t-tests to quantify differences in interspace Gypsum Soils Analysis Technical Conditions 241 surface characteristics between sites with and without buckwheat, between sites from the three distinct habitat classes (habitat, potential habitat, and non-habitat) (Figure 4-3a). Similarly, Wilcoxon signed rank tests were used as a non-parametric alternative to paired sample t-tests within buckwheat sites only (Figure 4-3b). The Wilcoxon tests compared characteristics between:

- Buckwheat canopies (BW) and non-buckwheat canopies (UC),
- Interspace characteristics (IN) versus buckwheat canopy (BW) characteristics,
- Interspace (IN) characteristics to those of non-buckwheat canopies (UC).

In contrast to the subsurface horizon statistical analyses, grouping of surface sample laboratory data was unnecessary. Thus, surface statistics sought trends among raw data values, and did not use pre-grouped site means, minima, or maxima.

from three categories.			
Point Count Variables	Laboratory analysis variables	Morphometric and GIS-derived variables	
Cyanobacteria	Moisture (%)	Elevation (m)	
Moss	pH-1:1 Soil:H ₂ O	Slope angle (deg)	
Collema sp.	pH-CaCl ₂	Aspect (deg)	
Placidium sp.	pH -Saturated Paste	Surface Horizon Thickness (cm)	
Psora sp.	Saturated Paste ECe	Whole-Year Insolation	
Blue Lichen (unknown taxon)	Total N		
White Lichen (dead or unknown taxon)	Total C		
Yellow Lichen (unknown taxon)	Organic C		
Chert	Inorganic C		
Limestone Clast	CaCO ₃		
Sandstone Clast	Cl		
Petrocalcic Clast	SO4 ²⁻		
Other Igneous Clast	NO_3^-		
Other Rock	В		
Gypsum/Rock gypsum	Р		
Quartzite	Мо		
Siltstone	Mn		
Bare	Fe		
Litter	Со		
Grass Litter	Ni		
Total Lichen*	Cu		
Moss-Lichen*	Zn		
Total BSC*	As		
Cyanobacteria-Bare*	Na		
Total Rock*	Κ		
AllRock*	Ca		
Carbonate Rock*	Mg		
Chert-Quartzite*	Percent Clay		
* Composite variable (see Table 4-2)	Percent Silt Percent Sand		

Table 4-1: Statistical analysis of surface data sought trends among these 63 variables

Table 4-2: Summary of co	omposite variable classes used in statistical
analysis of surface data.	
Composite Class	Component Categories
Total Lichen	Sum of all lichen cover from point count data.
Moss-lichen	Sum of all moss and lichen cover from point count data.
Total BSCs	Sum of cyanobacteria, moss, and all lichen from point count data
Cyanobacteria-Bare	Sum of cyanobacteria and bare soil cover from point count data.
All Rock (including gypsum)	Sum of surface rock cover from point count data; clasts include gypsum, limestone, sandstone, petrocalcic, igneous, quartzite, siltstone, and "other" rock fragments
Total Rock (Non-Gypsum Rock)	Sum of non-gypsum surface rock cover from point count data; clasts include limestone, sandstone, petrocalcic, igneous, quartzite, siltstone, and "other" rock fragments.
Carbonate Rock	Sum of limestone and petrocalcic surface rock cover from point count data.
Chert-Quartzite	Sum of all chert and quartzite rock cover from point count data.
Surface Horizon Thickness	Thickness of A or Av horizon in cm. AC horizons are not included - listed as 0 cm thickness.

Figure 4-3: Schematic illustration of (**A**) unpaired and (**B**) paired surface sample data analyses. Abbreviations for buckwheat presence/absence or habitat classes are BW = buckwheat, NBW = non-buckwheat, HAB = habitat, PHAB = potential habitat, NHAB = non-habitat. Canopy type abbreviations are BW = buckwheat canopy, IN = interspace, UC = other plant canopy.

III. Results

Laboratory analysis of 223 samples produced a data set too large to present concisely outside of a digital spreadsheet. Similarly, statistical comparisons of the 63 variables incorporated from laboratory, point count, and GIS data generated 24 distinct spreadsheets with detailed descriptive statistics.

Consequently, results have been greatly simplified for ease of display and discussion. Results from the Mann-Whitney and the Wilcoxon tests are presented in Tables 4-3 to 4-8, each of which presents the p-value, and the median values for each of the two compared classes (i.e., buckwheat/non-buckwheat, habitat/potential habitat, potential habitat/non-habitat), for each variable found to vary significantly between classes. Furthermore, each principle table consists of four sub-tables that describe the results for (a) Coyote Springs, (b) Gold Butte, (c) Bitter Spring, and (d) all study areas combined. For assistance in navigating these tables, we outline their order here:

- Unpaired comparison of buckwheat interspaces and non-buckwheat interspaces (Table 4-3)
- Paired comparison of soils under buckwheat canopies to soils under other plant canopies within buckwheat habitat (Table 4-4).
- Paired comparison of soils under buckwheat canopies versus interspace soils within buckwheat habitat (Table 4-5).
- Paired comparison of soils under other plant canopies versus soils in interspaces within buckwheat habitat (Table 4-6).
- Unpaired comparison of habitat interspaces versus potential habitat interspaces (Table 4-7).
- Unpaired comparison of potential habitat interspaces versus non-habitat interspaces (Table 4-8).

We also provide a summary of relative trends in these results to assist with the navigation and understanding of the statistical data (Tables 4-9 through 4-14).

To gain further insights into the possible causes of significant trends detected the by nonparametric t-tests, we also employed Spearman rank correlation tests in IBM SPSS Statistics 19, in a fashion nearly identical to that described for soil profile data (Chapter 3). These tests illustrated co-variance between specific variables including percent CaCO₃, plant-available Fe, organic C, litter, and grass litter (Tables 4-15 through 4-38). **Table 4-3:** Summary of unpaired non-parametric t-tests between interspaces in"Buckwheat" sites vs. interspaces in "Non-Buckwheat" Sites.

Table 4-3a: Summary for Coyote Springs sites only.					
Significant Variable	p-value (2-tailed)	BW Median	Non-BW Median		
Limestone Clast	0.003	4.000	52.318		
Bare	0.010	26.174	10.667		
Cyanobacteria-Bare	0.010	26.174	10.667		
Total Rock	0.013	66.000	75.333		
Carbonate Rock	0.006	59.459	75.333		
Chert-Quartzite	0.008	0.000	0.000*		
Total C	0.002	6.759	5.980		
Inorganic C	0.001	6.625	5.513		
CaCO ₃	0.001	55.209	45.943		
Р	0.045	0.048	2.176		
Fe	0.045	10.310	8.466		
Со	0.039	0.007	0.016		
Ca	0.034	864.676	558.585		
Mg	0.031	185.940	123.684		
Surface Horizon (cm)	0.005	3.000	7.000		
AllRock	0.013	66.000	75.333		
Coyote Springs n	(number of sites)	11	21		

Table 4-3b: Summary for Gold Butte sites only.					
Significant Variable	p-value (2-tailed)	BW Median	Non-BW Median		
Cyanobacteria	0.001	70.199	3.333		
Placidium	0.029	3.974	11.667		
Bare	0.020	2.000	7.667		
Grass Litter	0.022	0.000	0.000*		
Total BSC	0.008	88.667	29.333		
Cyanobacteria-Bare	0.027	71.333	30.898		
Total C	0.000	4.338	1.680		
Inorganic C	0.000	4.157	1.419		
CaCO ₃	0.000	34.641	11.826		
SO4 ²⁻	0.005	2600.060	2057.660		
Mn	0.009	1.416	2.326		
Fe	0.002	7.990	5.818		
Со	0.019	0.008	0.015		
Ni	0.001	0.072	0.038		
As	0.001	0.048	0.022		
К	0.023	7.263	10.078		
Ca	0.001	566.470	263.860		
Clay	0.013	7.556	5.783		
Sand	0.040	54.809	62.324		
Gold Butte n (number of sites)		9	28		

Table 4-3c: Summary for Bitter Spring sites only.					
Significant Variable	p-value (2-tailed)	BW Median	Non-BW Median		
Cyanobacteria	0.007	3.947	0.000		
Moisture (%)	0.008	4.993	2.015		
pH 1:1	0.005	7.820	8.252		
Р	0.017	0.487	1.137		
Bitter Spring n (number of sites)		11	18		

(*Table 4-3d* is on the next page)

Table 4-3d: Summary of All Study Areas combined.					
Significant Variable	p-value (2-tailed)	BW Median	Non-BW Median		
Cyanobacteria	0.015	2.667	0.000		
Grass Litter	0.040	0.000	0.000*		
Cyanobacteria-Bare	0.002	39.073	18.667		
Moisture (%)	0.004	3.301	1.854		
pH 1:1	0.028	7.937	8.385		
Total C	0.003	4.756	3.755		
Inorganic C	0.002	4.587	3.534		
CaCO ₃	0.002	38.221	29.446		
Р	0.000	0.742	1.997		
Mn	0.007	1.053	1.959		
Fe	0.000	9.923	7.121		
Со	0.000	0.007	0.013		
Ni	0.000	0.089	0.048		
As	0.022	0.049	0.027		
Ca	0.000	768.452	327.418		
Surface Horizon (cm)	0.015	4.000	5.000		
All Areas n (number of sites)		31	67		

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Medians in **bold** are the larger value.

- * Medians are equal, however, the class in bold has a larger mean.
Table 4-4: Summary of paired non-parametric t-tests for difference between soilsunder buckwheat canopies vs. soils under other plant canopies (paired within"Buckwheat" sites)

Table 4-4a: Summary for Coyote Springs sites only.				
Significant Variable	p-value (2-tailed)	BW Median	UC Median	
Litter	0.028	2.673	4.923	
Total Rock	0.047	66.000	57.667	
Fe	0.009	11.208	9.153	
Ni	0.037	0.105	0.084	
AllRockBW	0.047	66.000	57.667	
Coyote Springs n	(number of sites)	10	10	

Table 4-4b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	BW Median	UC Median
Moss	0.036	1.587	3.448
Psora	0.017	2.649	9.655
Grass Litter	0.043	0.000	0.667
Sat Paste pH	0.015	7.095	6.819
Total N	0.021	0.039	0.059
Мо	0.007	0.380	0.520
Со	0.015	0.011	0.007
AllRockBW	0.050	3.974	1.333
Gold Butte n (number of sites)		9	9

Table 4-4c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	BW Median	UC Median	
Litter	0.006	14.400	27.152	
Total Rock	0.037	43.791	27.632	
Total N	0.026	0.024	0.038	
AllRock	0.033	54.000	34.211	
Bitter Spring n (1	number of sites)	11	11	

Table 4-4d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	BW Median	UC Median
Psora	0.017	0.000*	0.000
Limestone Clast	0.026	5.982	6.042
Litter	0.001	11.582	21.594
Grass Litter	0.016	0.000	0.333
Total Rock	0.002	47.895	31.200
Carbonate Rock	0.005	39.000	24.333
pH Sat Paste	0.001	7.273	7.140
Total N	0.001	0.024	0.037
Р	0.003	0.780	1.419
AllRockBW	0.001	55.000	33.105
All Areas n (nu	mber of sites)	30	30

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Medians in **bold** are the larger value.

- * Medians are equal, however, the class in bold has a larger mean.

Table 4-5: Summary of paired non-parametric t-tests for difference between soilsunder buckwheat canopies vs. soils in interspaces at buckwheat sites (pairedwithin "Buckwheat" sites).

Table 4-5a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	IN Median	BW Median
Limestone Clast	0.033	4.000	5.298
Litter	0.007	0.000	2.667
ECe Sat Paste	0.013	0.298	0.395
Total N	0.010	0.012	0.021
Fe	0.021	10.310	11.476
Ni	0.008	0.093	0.106
К	0.016	10.887	16.929
Coyote Springs n	(number of sites)	11	11

Table 4-5b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	IN Median	BW Median
Cyanobacteria	0.011	70.199	20.667
Psora	0.028	0.000	2.649
Bare	0.028	2.000	11.000
Litter	0.008	0.667	24.000
Total BSC	0.011	88.667	53.642
Cyanobacteria-Bare	0.011	71.333	33.333
Moisture (%)	0.015	3.209	5.745
pH CaCl ₂	0.011	7.740	7.916
ECe Sat Paste	0.008	2.169	2.640
Cl	0.008	2.400	5.880
SO ₄ ²⁻	0.038	2600.060	2978.920
NO ₃ ⁻	0.018	1.200	3.440
В	0.015	0.116	0.346
Zn	0.044	0.066	0.111
K	0.011	7.263	18.801
Gold Butte n (ni	umber of sites)	9	9

Table 4-5c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	IN Median	BW Median	
Litter	0.003	3.333	14.400	
Moisture (%)	0.016	4.993	3.238	
ECe Sat Paste	0.003	2.171	2.385	
Total C	0.050	3.782	4.475	
Organic C	0.006	0.063	0.276	
Cl	0.050	2.700	4.240	
В	0.013	0.073	0.479	
Mn	0.006	1.053	1.792	
Со	0.008	0.007	0.010	
Cu	0.010	0.052	0.058	
Zn	0.026	0.040	0.063	
Bitter Spring n (1	number of sites)	11	11	

⁽Table 4-5d is on the next page)

Table 4-5d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	IN Median	BW Median
Cyanobacteria	0.006	2.667	4.000
Psora	0.028	0.000	0.000*
Litter	0.000	1.333	11.258
Total BSC	0.005	16.000	13.072
Cyanobacteria-Bare	0.002	39.073	26.174
ECe Sat Paste	0.000	2.088	2.285
Total N	0.001	0.013	0.024
Organic C	0.001	0.103	0.220
Cl	0.002	2.700	4.360
SO ₄ ²⁻	0.022	2280.440	2474.700
В	0.000	0.071	0.114
Mn	0.001	1.053	1.494
Со	0.011	0.007	0.009
Zn	0.010	0.048	0.083
К	0.001	10.451	18.801
Clay	0.044	7.933	7.608
All Areas n (nu	mber of sites)	31	31

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Medians in **bold** are the larger value.

- * Medians are equal, however, the class in bold has a larger mean.

Table 4-6: Summary of paired non-parametric t-tests for differences betweensoils under other plant canopies vs. soils in interspaces (paired within"Buckwheat" sites).

Table 4-6a: Summary for Coyote Springs sites only.				
Significant Variable	p-value (2-tailed)	IN Median	UC Median	
Litter	0.005	0.333	4.923	
Moisture (%)	0.037	1.876	1.823	
рН 1:1	0.025	8.399	8.367	
ECe Sat Paste	0.005	0.302	0.417	
Total N	0.013	0.012	0.022	
Organic C	0.028	0.085	0.188	
Р	0.028	0.102	0.352	
Mn	0.022	0.948	1.374	
Fe	0.037	10.178	9.153	
Со	0.009	0.007	0.009	
K	0.013	11.296	15.555	
Clay	0.022	13.024	10.229	
Coyote Springs n	(number of sites)	10	10	

Table 4-6b: Summary for Gold Butte sites only.				
Significant Variable	p-value (2-tailed)	IN Median	UC Median	
Cyanobacteria	0.008	70.199	19.333	
Moss	0.018	0.000	3.448	
Psora	0.017	0.000	9.655	
Yellow Lichen	0.043	0.000	0.671	
Bare	0.015	2.000	9.655	
Litter	0.008	0.667	27.333	
Grass Litter	0.042	0.000	0.667	
Total BSC	0.021	88.667	48.000	
Cyanobacteria-Bare	0.017	71.333	27.333	
Total Rock	0.043	0.662	0.000	
pH 1:1	0.028	7.866	7.963	
pH CaCl ₂	0.038	7.740	7.853	
pH Sat Paste	0.015	7.113	6.819	
ECe Sat Paste	0.008	2.169	2.718	
Total N	0.015	0.028	0.059	
Inorganic C	0.015	4.157	3.651	
CaCO ₃	0.015	34.641	30.429	
Cl	0.021	2.400	11.860	
NO ₃ ⁻	0.018	1.200	2.600	
В	0.008	0.116	0.341	
Р	0.038	1.777	2.646	
К	0.008	7.263	20.186	
Mg	0.011	29.276	43.216	
Clay	0.008	7.556	6.026	
AllRockIN	0.036	5.333	1.333	
Gold Butte n (ni	umber of sites)	9	9	

Table 4-6c: Summary for Bitter Spring sites only.				
Significant Variable	p-value (2-tailed)	IN Median	UC Median	
Limestone Clast	0.037	36.301	24.667	
Gypsum	0.024	0.667*	0.667	
Litter	0.003	3.333	27.152	
Total Rock	0.028	42.000	27.632	
Carbonate Rock	0.037	36.301	24.667	
Moisture (%)	0.008	4.993	3.491	
pH Sat Paste	0.033	7.463	7.285	
ECe Sat Paste	0.026	2.171	2.399	
Organic C	0.033	0.063	0.239	
Cl	0.016	2.700	6.420	
В	0.004	0.073	0.252	
Р	0.004	0.487	1.277	
Mn	0.033	1.053	1.521	
Fe	0.033	11.361	9.337	
Cu	0.003	0.052	0.064	
Ca	0.016	887.253	665.381	
AllRockIN	0.003	61.333	34.211	
<i>Bitter Spring</i> n (n	number of sites)	11	11	

Table 4-6d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	IN Median	UC Median
Cyano	0.003	3.307	2.667
Moss	0.018	0.000*	0.000
Psora	0.017	0.000*	0.000
Yellow Lichen	0.043	0.000*	0.000
Limestone Clast	0.003	10.333	6.042
Gypsum	0.028	0.000	0.000*
Litter	0.000	1.342	21.594
TotBSC	0.040	16.088	17.088
CyanoBare	0.006	39.203	29.438
AllRock	0.000	53.306	33.105
Total Rock	0.007	43.000	31.200
Carbonate Rock	0.010	35.114	24.333
pH CaCl ₂	0.048	7.811	7.856
pH Sat Paste	0.001	7.377	7.140
ECe Sat Paste	0.000	2.093	2.321
Total N	0.000	0.014	0.037
Organic C	0.000	0.099	0.297
Cl	0.001	2.680	4.960
SO4 ²⁻	0.028	2284.780	2612.390
В	0.000	0.072	0.208
Р	0.000	0.790	1.419
Mn	0.002	1.115	1.586
Cu	0.047	0.070	0.074
Zn	0.035	0.047	0.071
К	0.000	10.457	20.232
Clay	0.000	7.866	6.776
All Areas n (nu	umber of sites)	30	30

- Only variables flagged as statistically significant (p < 0.05) are shown. - Medians in **bold** are the larger value.

- * Medians are equal, however, the class in bold has a larger mean.

Table 4-7: Summary of unpaired non-parametric t-tests between interspaces in"Habitat" sites vs. interspaces in "Potential Habitat" Sites.

Table 4-7a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	PH Median	Habitat Median
Total C	0.019	6.173	6.803
Inorganic C	0.016	6.082	6.693
CaCO ₃	0.016	50.682	55.771
Clay	0.049	10.265	13.252
Coyote Springs n	(number of sites)	10	10

Table 4-7b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	PH Median	Habitat Median
Cyanobacteria	0.008	20.921	70.199
Total BSC	0.035	69.667	88.667
CyanoBare	0.045	30.898	71.333
Total C	0.003	2.647	4.338
Inorganic C	0.005	2.379	4.157
CaCO ₃	0.005	19.829	34.641
SO4 ²⁻	0.031	2184.900	2600.060
Mn	0.040	2.234	1.416
Fe	0.027	6.882	7.990
Ni	0.010	0.048	0.072
As	0.016	0.028	0.048
Ca	0.012	366.605	566.470
Gold Butte n (ni	umber of sites)	9	18

Table 4-7c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	PH Median	Habitat Median
Cyanobacteria-Bare	0.041	9.396	25.333
Р	0.033	1.395	0.487
Bitter Spring n (number of sites)		11	7

Table 4-7d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	PH Median	Habitat Median
TotLichen	0.036	16.000	5.687
Moss-Lichen	0.036	16.000	5.687
Total N	0.047	0.021	0.013
Total C	0.010	3.755	4.726
Organic C	0.030	0.156	0.107
Inorganic C	0.010	3.534	4.587
CaCO ₃	0.010	29.446	38.221
Р	0.016	1.827	0.790
Mn	0.029	1.928	1.115
Fe	0.006	7.551	9.768
Со	0.003	0.013	0.007
Ni	0.002	0.054	0.087
Ca	0.004	402.877	729.216
All Areas n (number of sites)		30	35

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Medians in **bold** are the larger value.

Table 4-8: Summary of unpaired non-parametric t-tests between interspaces in"Potential Habitat" sites vs. interspaces in "Non-Habitat" Sites.

Table 4-8a: Summary for Coyote Springs sites only.			
Significant Variable	p-value (2-tailed)	Non-Habitat Median	Potential Hab. Median
Blue Lichen	0.002	0.000	0.669
LS clast	0.005	75.082	14.667
Bkm Clast	0.014	5.953	51.333
Quartzite	0.012	0.333	0.000
Bare	0.004	5.647	16.667
CyanoBare	0.004	5.647	16.667
AllRock	0.006	90.118	70.140
TotRock	0.006	90.118	70.140
CarbRock	0.018	89.118	70.000
ChertQrzt	0.012	2.000	0.000
Inorganic C	0.021	5.374	6.082
CaCO ₃	0.021	44.785	50.682
Р	0.018	2.614	0.927
Mg	0.041	108.237	185.769
Surface Horizon (cm)	0.047	7.500	4.000
Coyote Springs n	(number of sites)	12	10

Table 4-8b: Summary for Gold Butte sites only.			
Significant Variable	p-value (2-tailed)	Non-Habitat Median	Potential Hab. Median
Cyanobacteria	0.004	0.000	20.921
LS clast	0.026	9.674	0.333
Gypsum	0.036	0.000	0.662
Bare	0.008	23.179	4.352
Litter	0.030	2.676	1.329
Grass Litter	0.002	4.662	0.000
TotRock	0.027	33.000	0.667
CarbRock	0.026	9.674	0.333
Moisture	0.014	0.795	2.642
pH 1:1	0.003	8.558	7.831
pH CaCl ₂	0.020	7.941	7.718
ECe Sat Paste	0.005	0.360	2.151
Total N	0.017	0.018	0.034
Total C	0.005	1.175	2.647
Organic C	0.031	0.142	0.251
Inorganic C	0.014	1.061	2.379
CaCO ₃	0.014	8.842	19.829
SO4 ²⁻	0.004	58.100	2184.900
В	0.003	0.050	0.158
Fe	0.000	3.685	6.882
Ni	0.000	0.023	0.048
Cu	0.006	0.058	0.098
As	0.000	0.012	0.028
Са	0.001	106.219	366.605
Clay	0.044	5.189	6.584
Silt	0.011	23.571	36.614
Sand	0.014	71.118	57.175
Elevation	0.049	702.857	704.639
Gold Butte n (ni	umber of sites)	10	18

Table 4-8c: Summary for Bitter Spring sites only.			
Significant Variable	p-value (2-tailed)	Non-Habitat Median	Potential Hab. Median
Moisture	0.016394307	1.425935	3.630315
Clay	0.026494636	8.396638	4.373816
Bitter Spring n (number of sites)		11	7

Table 4-8d: Summary of All Study Areas combined.			
Significant Variable	p-value (2-tailed)	Non-Habitat Median	Potential Hab. Median
Cyanobacteria	0.000	0.000	0.000
Collema	0.008	1.961	10.667
Psora	0.016	0.000	0.000*
LS clast	0.000	46.667	3.333
Quartzite	0.009	0.000*	0.000
Grass Litter	0.049	1.987	0.000
Total Lichen	0.037	8.609	16.000
Moss-Lichen	0.043	8.609	16.000
Total BSC	0.014	8.609	16.000
Total Rock	0.002	61.589	10.000
Carbonate Rock	0.002	52.318	3.333
Chert & Quarttzite	0.036	0.000*	0.000
Moisture	0.003	1.426	2.614
pH 1:1	0.002	8.484	7.973
pH CaCl ₂	0.004	7.915	7.811
Ece Sat Paste	0.042	0.354	2.122
Organic C	0.011	0.088	0.156
Fe	0.035	6.724	7.551
All Areas n (number of sites)		33	35

- Only variables flagged as statistically significant (p < 0.05) are shown.

- Medians in **bold** are the larger value.

- * These medians are equal, however, the class in bold has a larger mean.

Table 4-9: Summary of trends in statistically significant results onsurface characteristics between "Buckwheat" site Interspaces and"Non-Buckwheat" site Interspaces.

Table 4-9a: Summary for Coyote Springs sites only.		
Significant Variable	Buckwheat Median	
Limestone clast	Less/Fewer in BW interspaces	
Carbonate rock	Less/Fewer in BW interspaces	
Chert-Quartzite	Less/Fewer in BW interspaces	
Total Rock	Less/Fewer in BW interspaces	
All Rock	Less/Fewer in BW interspaces	
Total C	More/Greater in BW interspaces	
Inorganic C	More/Greater in BW interspaces	
CaCO ₃	More/Greater in BW interspaces	
Ca	More/Greater in BW interspaces	
Mg	More/Greater in BW interspaces	
Fe	More/Greater in BW interspaces	
Р	Less/Fewer in BW interspaces	
Со	Less/Fewer in BW interspaces	
Surface horizon (cm)	Less/Fewer in BW interspaces	
Bare	More/Greater in BW interspaces	
Cyanobacteria - Bare	More/Greater in BW interspaces	

Table 4-9b: Summary for Gold Butte sites only.		
Significant Variable	Buckwheat Median	
Sand	Less/Lower in BW interspaces	
Clay	More/Greater in BW interspaces	
Total C	More/Greater in BW interspaces	
Inorganic C	More/Greater in BW interspaces	
CaCO ₃	More/Greater in BW interspaces	
Ca	More/Greater in BW interspaces	
Fe	More/Greater in BW interspaces	
Ni	More/Greater in BW interspaces	
K	Less/Fewer in BW interspaces	
As	More/Greater in BW interspaces	
Со	Less/Fewer in BW interspaces	
Mn	Less/Fewer in BW interspaces	
SO_4	More/Greater in BW interspaces	
Grass Litter	Less/Fewer in BW interspaces	
Bare	Less/Fewer in BW interspaces	
Cyanobacteria - Bare	More/Greater in BW interspaces	
Cyanobacteria	More/Greater in BW interspaces	
Placidium	Less/Fewer in BW interspaces	
Total BSC	More/Greater in BW interspaces	

(Table 4-9 continues on the next page)

Table 4-9c: Summary for Bitter Spring sites only.		
Significant Variable	Buckwheat Median	
pH (1:1)	Less/Lower in BW interspaces	
Р	Less/Fewer in BW interspaces	
Moisture	More/Greater in BW interspaces	
Cyanobacteria	More/Greater in BW interspaces	

Table 4-9d: Summary for All Sites Combined.		
Significant Variable	Buckwheat Median	
pH (1:1)	Less/Lower in BW interspaces	
Total C	More/Greater in BW interspaces	
Inorganic C	More/Greater in BW interspaces	
CaCO ₃	More/Greater in BW interspaces	
Ca	More/Greater in BW interspaces	
Fe	More/Greater in BW interspaces	
Ni	More/Greater in BW interspaces	
As	More/Greater in BW interspaces	
Р	Less/Fewer in BW interspaces	
Со	Less/Fewer in BW interspaces	
Mn	Less/Fewer in BW interspaces	
Surface Horizon	Less/Fewer in BW interspaces	
Moisture	More/Greater in BW interspaces	
Grass Litter	Less/Fewer in BW interspaces	
Cyanobacteria - Bare	More/Greater in BW interspaces	
Cyanobacteria	More/Greater in BW interspaces	

Table 4-10: Summary of trends in statistically significant results onsurface characteristics under **Buckwheat canopies vs. under otherplant canopies** (paired within "Buckwheat" sites)

Table 4-10a: Summary for Coyote Springs sites only.	
Significant Variable	Buckwheat Median
Total Rock	More/Greater in BW canopies
All Rock BW (?)	More/Greater in BW canopies
Fe	More/Greater in BW canopies
Ni	More/Greater in BW canopies
Litter	Less/Fewer in BW canopies

Table 4-10b: Summary for Gold Butte sites only.	
Significant Variable	Buckwheat Median
pH (sat. paste)	Higher/Greater in BW canopies
All rock BW (?)	More/Greater in BW canopies
Со	More/Greater in BW canopies
Мо	Less/Fewer in BW canopies
Total N	Less/Fewer in BW canopies
Grass Litter	Less/Fewer in BW canopies
Moss	Less/Fewer in BW canopies
Psora	Less/Fewer in BW canopies

Table 4-10c: Summary for Bitter Spring sites only.	
Significant Variable	Buckwheat Median
Total rock	More/Greater in BW canopies
All rock	More/Greater in BW canopies
Total N	Less/Fewer in BW canopies
Litter	Less/Fewer in BW canopies

Table 4-10d: Summary for All Sites Combined.	
Significant Variable	Buckwheat Median
pH (sat. paste)	Higher/Greater in BW canopies
Limestone Clast	Less/Fewer in BW canopies
Carbonate Rock	More/Greater in BW canopies
Total Rock	More/Greater in BW canopies
All Rock BW (?)	More/Greater in BW canopies
Р	Less/Fewer in BW canopies
Total N	Less/Fewer in BW canopies
Grass Litter	Less/Fewer in BW canopies
Litter	Less/Fewer in BW canopies
Psora	More/Greater in BW canopies

Table 4-11: Summary of trends in statistically significant results onsurface characteristics under **Buckwheat canopies vs. interspaces** atBuckwheat sites (paired within Buckwheat sites).

Table 4-11a: Summary for Coyote Springs sites only.	
Significant Variable	Buckwheat Median
Limestone Clast	More/Greater in BW canopies
Fe	More/Greater in BW canopies
Ni	More/Greater in BW canopies
К	More/Greater in BW canopies
Total N	More/Greater in BW canopies
EC	More/Greater in BW canopies
Litter	More/Greater in BW canopies

Table 4-11b: Summary for Gold Butte sites only.	
Significant Variable	Buckwheat Median
pH (CaCl ₂)	Higher/Greater in BW canopies
К	More/Greater in BW canopies
В	More/Greater in BW canopies
Zn	More/Greater in BW canopies
SO4	More/Greater in BW canopies
Cl	More/Greater in BW canopies
NO ₃	More/Greater in BW canopies
EC	More/Greater in BW canopies
Moisture	More/Greater in BW canopies
Litter	More/Greater in BW canopies
Bare	More/Greater in BW canopies
Cyanobacteria - Bare	Less/Fewer in BW canopies
Cyanobacteria	Less/Fewer in BW canopies
Psora	More/Greater in BW canopies
Total BSC	Less/Fewer in BW canopies

Fable 4-11c: Summary for Bitter Spring sites only.	
Significant Variable	Buckwheat Median
Total C	More/Greater in BW canopies
Organic C	More/Greater in BW canopies
В	More/Greater in BW canopies
Со	More/Greater in BW canopies
Cu	More/Greater in BW canopies
Mn	More/Greater in BW canopies
Zn	More/Greater in BW canopies
Cl	More/Greater in BW canopies
EC	More/Greater in BW canopies
Moisture	Less/Fewer in BW canopies
Litter	More/Greater in BW canopies

(Table 4-11 continues on the next page)

Table 4-11d: Summary for All Sites Combined.	
Significant Variable	Buckwheat Median
Clay	Less/Fewer in BW canopies
Organic C	More/Greater in BW canopies
К	More/Greater in BW canopies
В	More/Greater in BW canopies
Со	More/Greater in BW canopies
Mn	More/Greater in BW canopies
Zn	More/Greater in BW canopies
SO_4^{2-}	More/Greater in BW canopies
Cl	More/Greater in BW canopies
EC	More/Greater in BW canopies
Total N	More/Greater in BW canopies
Litter	More/Greater in BW canopies
Cyanobacteria - Bare	Less/Fewer in BW canopies
Cyanobacteria	More/Greater in BW canopies
Psora	More/Greater in BW canopies
Total BSC	Less/Fewer in BW canopies

Table 4-12: Summary of trends in statistically significant results onsurface characteristics under **other plant canopies vs. interspaces** atBuckwheat sites (paired within Buckwheat sites).

Table 4-12a: Summary for Coyote Springs sites only.	
Significant Variable	Other Canopy Median
pH (1:1)	Less/Fewer in Other canopies
Clay	Less/Fewer in Other canopies
Organic C	More/Greater in Other canopies
Fe	Less/Fewer in Other canopies
К	More/Greater in Other canopies
Р	More/Greater in Other canopies
Со	More/Greater in Other canopies
Mn	More/Greater in Other canopies
EC	More/Greater in Other canopies
Moisture	Less/Fewer in Other canopies
Total N	More/Greater in Other canopies
Litter	More/Greater in Other canopies
Table 4-12b: Summary	for Gold Butte sites only.
Significant Variable	Other Canopy Median
pH (1:1)	Higher/Greater in Other canopies
pH (CaCl ₂)	Higher/Greater in Other canopies
pH (sat. paste)	Less/Lower in Other canopies
Clay	Less/Fewer in Other canopies
Total Rock	Less/Fewer in Other canopies
All RockIN	Less/Fewer in Other canopies
Inorganic C	Less/Fewer in Other canopies
CaCO ₃	Less/Fewer in Other canopies
Mg	More/Greater in Other canopies
B	More/Greater in Other canopies
К	More/Greater in Other canopies
Р	More/Greater in Other canopies
Cl	More/Greater in Other canopies
NO3	More/Greater in Other canopies
Total N	More/Greater in Other canopies
EC	More/Greater in Other canopies
Grass Litter	More/Greater in Other canopies
Litter	More/Greater in Other canopies
Bare	More/Greater in Other canopies
Cyanobacteria - Bare	Less/Fewer in Other canopies
Cyanobacteria	Less/Fewer in Other canopies
Moss	More/Greater in Other canopies
Psora	More/Greater in Other canopies
Yellow Lichen	More/Greater in Other canopies
Total BSC	Less/Fewer in Other canopies

(Table 4-12 continues on the next page)

Table 4-12c: Summary for Bitter Spring sites only.		
Significant Variable	Other Canopy Median	
pH (sat. paste)	Less/Lower in Other canopies	
Limestone Clast	Less/Fewer in Other canopies	
Carbonate Rock	Less/Fewer in Other canopies	
Gypsum	Less/Fewer in Other canopies	
Total Rock	Less/Fewer in Other canopies	
All Rock IN	Less/Fewer in Other canopies	
Organic C	More/Greater in Other canopies	
Ca	Less/Fewer in Other canopies	
Fe	Less/Fewer in Other canopies	
В	More/Greater in Other canopies	
Р	More/Greater in Other canopies	
Mn	More/Greater in Other canopies	
Cu	More/Greater in Other canopies	
Cl	More/Greater in Other canopies	
EC	More/Greater in Other canopies	
Moisture	Less/Fewer in Other canopies	
Litter	More/Greater in Other canopies	
Table 4-12d: Summary	for All Sites Combined.	
Significant Variable	Other Canopy Median	
pH (CaCl ₂)	Higher/Greater in Other canopies	
pH (sat. paste)	Less/Fewer in Other canopies	
Clay	Less/Fewer in Other canopies	
Limestone Clast	Less/Fewer in Other canopies	
Carbonate Rock	Less/Fewer in Other canopies	
Gypsum	More/Greater in Other canopies	
Total Rock	Less/Fewer in Other canopies	
All Rock	Less/Fewer in Other canopies	
Organic C	More/Greater in Other canopies	
K	More/Greater in Other canopies	
В	More/Greater in Other canopies	
Р	More/Greater in Other canopies	
Mn	More/Greater in Other canopies	
Cu	More/Greater in Other canopies	
Zn	More/Greater in Other canopies	
SO_4^{2-}	More/Greater in Other canopies	
Cl	More/Greater in Other canopies	
EC	More/Greater in Other canopies	
Total N	More/Greater in Other canopies	
Litter	More/Greater in Other canopies	
Cyanobacteria - Bare	Less/Fewer in Other canopies	
Cyanobacteria	Less/Fewer in Other canopies	
Moss	Less/Fewer in Other canopies	
Psora	Less/Fewer in Other canopies	
Yellow Lichen	Less/Fewer in Other canonies	
Total BSC	More/Greater in Other canonies	
	more, Greater in Other canopies	

Table 4-13: Summary of trends in statistically significant results onsurface characteristics in *interspaces* in Buckwheat habitat vs.*interspaces* in "Potential" habitat sites.

Table 4-13a: Summary for Coyote Springs sites only.	
Significant Variable	Buckwheat Habitat Interspaces Median
Clay	More/Greater in BW interspaces
Total C	More/Greater in BW interspaces
Inorganic C	More/Greater in BW interspaces
CaCO ₃	More/Greater in BW interspaces

Table 4-13b: Summary for Gold Butte sites only.	
Significant Variable	Buckwheat Habitat Interspaces Median
Total C	More/Greater in BW interspaces
Inorganic C	More/Greater in BW interspaces
CaCO ₃	More/Greater in BW interspaces
Ca	More/Greater in BW interspaces
Fe	More/Greater in BW interspaces
Ni	More/Greater in BW interspaces
As	More/Greater in BW interspaces
Mn	Less/Fewer in BW interspaces
SO_4	More/Greater in BW interspaces
Cyanobacteria - Bare	More/Greater in BW interspaces
Cyanobacteria	More/Greater in BW interspaces
Total BSC	More/Greater in BW interspaces

Table 4-13c: Summary for Bitter Spring sites only.			
Significant Variable Buckwheat Habitat Interspaces Median			
Р	Less/Fewer in BW interspaces		
Cyanobacteria - Bare	More/Greater in BW interspaces		

Table 4-13d: Summary for All Sites Combined.			
Significant Variable Buckwheat Habitat Interspaces Median			
Organic C	Less/Fewer in BW interspaces		
Total C	More/Greater in BW interspaces		
Inorganic C	More/Greater in BW interspaces		
CaCO ₃	More/Greater in BW interspaces		
Ca	More/Greater in BW interspaces		
Fe	More/Greater in BW interspaces		
Ni	More/Greater in BW interspaces		
Р	Less/Fewer in BW interspaces		
Со	Less/Fewer in BW interspaces		
Mn	Less/Fewer in BW interspaces		
Total N	Less/Fewer in BW interspaces		
Moss-Lichen	Less/Fewer in BW interspaces		
Total Lichen	Less/Fewer in BW interspaces		

Table 4-14: Summary of trends in statistically significant results on surface characteristics in interspaces in "Potential" habitat sites vs interpaces in Non-Habitat sites.

Table 4-14a: Summary for Coyote Springs sites only.			
Significant Variable "Potential" Habitat Interspaces M			
Limestone Clast	Less/Fewer in "Potential" interspaces		
Carbonate Rock	Less/Fewer in "Potential" interspaces		
Bkm clast	More/Greater in "Potential" interspaces		
Quartzite	Less/Fewer in "Potential" interspaces		
Chert-Quartzite	Less/Fewer in "Potential" interspaces		
Total Rock	Less/Fewer in "Potential" interspaces		
All Rock	Less/Fewer in "Potential" interspaces		
Inorganic C	More/Greater in "Potential" interspaces		
CaCO ₃	More/Greater in "Potential" interspaces		
Mg	More/Greater in "Potential" interspaces		
Р	Less/Fewer in "Potential" interspaces		
Surface horizon (cm)	Less/Fewer in "Potential" interspaces		
Bare	More/Greater in "Potential" interspaces		
Cyanobacteria-Bare	More/Greater in "Potential" interspaces		
Blue Lichen	More/Greater in "Potential" interspaces		

Table 4-14b: Summary for Gold Butte sites only.

Significant Variable	"Potential" Habitat Interspaces Median		
pH (1:1)	Less/Lower in "Potential" interspaces		
pH (CaCl ₂)	Less/Lower in "Potential" interspaces		
Clay	More/Greater in "Potential" interspaces		
Silt	More/Greater in "Potential" interspaces		
Sand	Less/Fewer in "Potential" interspaces		
Elevation	More/Greater in "Potential" interspaces		
Limestone Clast	Less/Fewer in "Potential" interspaces		
Carbonate Rock	Less/Fewer in "Potential" interspaces		
Gypsum	More/Greater in "Potential" interspaces		
Total Rock	Less/Fewer in "Potential" interspaces		
Organic C	More/Greater in "Potential" interspaces		
Total C	More/Greater in "Potential" interspaces		
Inorganic C	More/Greater in "Potential" interspaces		
CaCO ₃	More/Greater in "Potential" interspaces		
Ca	More/Greater in "Potential" interspaces		
Fe	More/Greater in "Potential" interspaces		
Ni	More/Greater in "Potential" interspaces		
В	More/Greater in "Potential" interspaces		
As	More/Greater in "Potential" interspaces		
Cu	More/Greater in "Potential" interspaces		
SO_4	More/Greater in "Potential" interspaces		
EC	More/Greater in "Potential" interspaces		
Total N	More/Greater in "Potential" interspaces		

Table 4-14b (continued)			
Significant Variable "Potential" Habitat Interspaces Median			
Moisture	More/Greater in "Potential" interspaces		
Grass Litter	Less/Fewer in "Potential" interspaces		
Litter	Less/Fewer in "Potential" interspaces		
Bare	Less/Fewer in "Potential" interspaces		
Cyanobacteria	More/Greater in "Potential" interspaces		

Table 4-14c: Summary for Bitter Spring sites only.			
Significant Variable	"Potential" Habitat Interspaces Median		
Moisture	More/Greater in "Potential" interspaces		
Clay	Less/Fewer in "Potential" interspaces		

Table 4-14d: Summary for All Sites Combined.			
Significant Variable	"Potential" Habitat Interspaces Median		
pH (1:1)	Less/Lower in "Potential" interspaces		
pH (CaCl ₂)	Less/Fewer in "Potential" interspaces		
Limestone Clast	Less/Fewer in "Potential" interspaces		
Carbonate Rock	Less/Fewer in "Potential" interspaces		
Quartzite	Less/Fewer in "Potential" interspaces		
Chert & Quartzite	Less/Fewer in "Potential" interspaces		
Total Rock	Less/Fewer in "Potential" interspaces		
Organic C	More/Greater in "Potential" interspaces		
Fe	More/Greater in "Potential" interspaces		
EC	More/Greater in "Potential" interspaces		
Moisture	More/Greater in "Potential" interspaces		
Grass Litter	Less/Fewer in "Potential" interspaces		
Cyanobacteria	More/Greater in "Potential" interspaces		
Psora	More/Greater in "Potential" interspaces		
Collema	More/Greater in "Potential" interspaces		
Moss-Lichen	More/Greater in "Potential" interspaces		
Total Lichen	More/Greater in "Potential" interspaces		
Total BSC	More/Greater in "Potential" interspaces		

Sites			
Table 4-15a: Summary for Buckwheat Interspace, Surface Data, All			
Sites: Correlation	to CaCO ₃		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.994	.000
Mg	Strong Positive	.762	.000
Northing	Strong Positive	.717	.000
pH (1:1)	Strong Positive	.690	.000
As	Strong Negative	685	.000
EC	Strong Negative	677	.000
Bkm Clast	Strong Positive	.671	.000
SO ₄	Strong Negative	645	.000
Slope	Strong Negative	636	.000
Clay	Strong Positive	.629	.000
Gypsum	Strong Negative	627	.000
Easting	Strong Negative	572	.001
Moisture	Strong Negative	552	.001
В	Strong Negative	540	.002
Elevation	Strong Negative	522	.003
pH (CaCl ₂)	Strong Positive	.513	.003
NO ₃	Strong Positive	.463	.009
Cvanobacteria	Strong Negative	462	.009
CarbRock	Strong Positive	.460	.009
TotRock	Strong Positive	.456	.010
Silt	Strong Negative	451	.011
Litter	Moderate Negative	449	.011
Blue Lichen	Moderate Positive	.437	.014
Grass Litter	Moderate Negative	407	.023
Р	Moderate Negative	355	.050
Table 4-15b: Sun	nmary for Buckwheat Ir	nterspace, Surfac	e Data, All
Sites: Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.929	.000
Ca	Strong Positive	.804	.000
Р	Strong Negative	652	.000
Total N	Strong Negative	544	.002
Mn	Strong Negative	492	.005

Table 4-15: Spearman's Rho Buckwheat Interspace, Surface Data, All

 Sites

(continued on next page)

-.386

-.371

-.358

Moderate Negative

Moderate Negative

Moderate Negative

Co

Easting

Placidium

.032

.040

.048

Table 4-15c : Summary for Buckwheat Interspace, Surface Data, All				
Sites: Correlation to Organic C				
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value	
Na	Strong Positive	.608	.000	
TotRock	Moderate Negative	424	.017	
Collema	Moderate Positive	.419	.019	
CarbRock	Moderate Negative	415	.020	
Total N	Moderate Positive	.367	.042	
LS clast	Moderate Negative	359	.047	
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
As	Strong Positive	.635	.000	
Grass Litter	Strong Positive	.577	.001	
Northing	Strong Negative	573	.001	
Clay	Strong Negative	506	.004	
Total C	Strong Negative	465	.008	
Inorganic C	Moderate Negative	449	.011	
CaCO ₃	Moderate Negative	449	.011	
Bkm Clast	Moderate Negative	441	.013	
Chert	Moderate Positive	.408	022	
	infouerate i obitive		.025	
pH (1:1)	Moderate Negative	378	.023	

Table 4-15e: Summary for Buckwheat Interspace, Surface Data, All			
Sites: Correlation to Grass Litter			
Significant	Correlation to Grass	Correlation	n voluo
Variable	Litter	coefficient	p-value
Clay	Strong Negative	706	.000
LS clast	Strong Positive	.637	.000
As	Strong Positive	.629	.000
Cu	Strong Negative	621	.000
Sand	Strong Positive	.619	.000
Litter	Strong Positive	.577	.001
Northing	Strong Negative	570	.001
Collema	Strong Negative	552	.001
K	Strong Positive	.540	.002
Moisture	Strong Positive	.490	.005
Na	Strong Negative	480	.006
Zn	Moderate Negative	445	.012
Total C	Moderate Negative	434	.015
pH (sat. paste)	Moderate Positive	.412	.021
Inorganic C	Moderate Negative	407	.023
CaCO ₃	Moderate Negative	407	.023
Bkm Clast	Moderate Negative	391	.029
Со	Moderate Negative	386	.032
Silt	Moderate Negative	386	.032
TotLichen	Moderate Negative	385	.033
MossLichen	Moderate Negative	385	.033
EC	Moderate Positive	.357	.048
SO4	Moderate Positive	.356	.049

Table 4-16: Spearman's Rho Buckwheat Interspace, Surface Data, Bitter			
Springs			
Table 4-16a: Sun	nmary for Buckwheat In	iterspace, Surfac	e Data, Bitter
Springs: Correlati	on to CaCO ₃		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.998	.000
Table 4-16b. Sup	mary for Buckwheat Ir	terspace Surfac	a Data Bittar
Springs: Correlati	on to Fe	licispace, Surrae	c Data, Ditter
Springs. Concidu		Correlation	
Significant	Correlation to Fe	coefficient	p-value
v ar fable	Strong Positive	855	001
Clav	Strong Positive	.764	.006
SQ4	Strong Positive	.727	.011
Grass Litter	Strong Negative	694	.018
Gypsum	Strong Positive	.653	.029
Table 4-16c: Sum	mary for Buckwheat In	terspace, Surfac	e Data, Bitter
Springs: Correlati	on to Organic C		
Significant		Correlation	
Variable	Correlation to Organic C	coefficient	p-value
Р	Strong Positive	.782	.004
Table 4-16d: Sun	nmary for Buckwheat In	iterspace, Surfac	e Data, Bitter
Springs: Correlati	on to Litter		
Significant Variable	Correlation to Litter	Correlation coefficient	p-value
	NONE		
Table 4-16e: Sum	mary for Buckwheat In	terspace, Surfac	e Data, Bitter
Springs: Correlation to Grass Litter			
Significant	Correlation to Grass	Correlation	
Variable	Litter	coefficient	p-value
Clay	Strong Negative	851	.001
NO ₃	Strong Positive	.791	.004
K	Strong Positive	.777	.005
Gypsum	Strong Negative	767	.006
pH (sat. paste)	Strong Positive	.699	.017
Sand Ea	Strong Positive	.699	.017
re Dlaoidium	Strong Negative	694	.018
$\frac{1}{2} \frac{1}{2} \frac{1}$	Strong Positive	.092	.018
pri (CaCl ₂)	Subig Positive	.085	.020

Strong Positive

TotRock

.038

.630

Table 4-17: Spearman's Rho Buckwheat Interspace, Surface Data,

 Coyote Springs

Table 4-17a: Summary for Buckwheat Interspace, Surface Data, Coyote Springs: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.982	.000
Silt	Strong Negative	845	.001
As	Strong Negative	836	.001
P	Strong Negative	655	.029
Sand	Strong Positive	.609	.047

Table 4-17b: Summary for Buckwheat Interspace, Surface Data, Coyote

 Springs: Correlation to Fe

1 0			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.973	.000
Ca	Strong Positive	.873	.000
Р	Strong Negative	782	.004
Co	Strong Negative	773	.005

Table 4-17c: Summary for Buckwheat Interspace, Surface Data, Coyote

 Springs: Correlation to Organic C

1 0	5		
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Na	Very Strong Positive	.909	.000
Ca	Strong Positive	.709	.015
pH (CaCl ₂)	Strong Positive	.700	.016
B	Strong Negative	691	.019
Mg	Strong Positive	.609	.047

Table 4-17d: Summary for Buckwheat Interspace, Surface Data, Coyote

 Springs: Correlation to Litter

Significant Variable	Correlation to Litter	Correlation coefficient	p-value
SO ₄	Strong Negative	676	.022
Total N	Strong Positive	.666	.025

Table 4-17e: Summary for Buckwheat Interspace, Surface Data, CoyoteSprings: Correlation to Grass LitterSignificantCorrelation to GrassSignificantCorrelation to GrassCorrelationVariableLittercoefficientp-valueNONE

Table 4-18:	Spearman's I	Rho Buck	wheat Inter	rspace, Su	rface Data,	Gold
Butte						

Table 4-18a: Summary for Buckwheat Interspace, Surface Data, GoldButte: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.983	.000
Mg	Very Strong Positive	.983	.000
Gypsum	Very Strong Negative	966	.000
Ni	Strong Positive	.800	.010
Zn	Strong Negative	783	.013
Total N	Strong Negative	750	.020
Ca	Strong Positive	.717	.030
Р	Strong Negative	700	.036
Clay	Strong Positive	.700	.036
Slope	Strong Negative	700	.036
Organic C	Strong Negative	683	.042

Table 4-18b : Summary for Buckwheat Interspace, Surface Data, Gold						
Butte: Correlation	Butte: Correlation to Fe					
Significant Variable	Correlation to Fe	Correlation coefficient	p-value			
Ca	Strong Positive	.800	.010			
Total N	Strong Negative	783	.013			
Ni	Strong Positive	.783	.013			
EC	Strong Negative	753	.019			
Zn	Strong Negative	733	.025			
Other Rock	Strong Positive	.707	.033			
K	Strong Negative	700	.036			

Table 4-18c: Summary for Buckwheat Interspace, Surface Data, GoldButte: Correlation to Organic C

0				
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value	
Ca	Strong Negative	783	.013	
Ni	Strong Negative	767	.016	
Zn	Strong Positive	.767	.016	
Total N	Strong Positive	.750	.020	
Mg	Strong Negative	733	.025	
Cl	Strong Positive	.700	.036	
Inorganic C	Strong Negative	683	.042	
CaCO ₃	Strong Negative	683	.042	
P	Strong Positive	.683	.042	

Table 4-18d: Summary for Buckwheat Interspace, Surface Data, Gold				
Butte: Correlation	to Litter			
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
Ni	Strong Positive	.787	.012	
Ca	Strong Positive	.787	.012	
As	Strong Positive	.743	.022	
Aspect	Strong Positive	.743	.022	
Surf horz thk cm	Strong Negative	722	.028	
Р	Strong Negative	717	.030	
Mn	Strong Negative	699	.036	
pH (sat. paste)	Strong Positive	.682	.043	
Table 4-18e: Sum	mary for Buckwheat In	terspace, Surfac	e Data, Gold	
Butte: Correlation to Grass Litter				
Significant Variable	Correlation to Grass Litter	Correlation coefficient	p-value	
	NONE			

Table 4-19: Spearman's Rho No	n-BW Interspace,	Surface Data, A	411
Sites			

Table 4-19a: Summary for Non-BW Interspace, Surface Data, All Sites:				
Correlation to CaCO ₃				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.995	.000	
Mg	Strong Positive	.762	.000	
Elevation	Strong Negative	696	.000	
Easting	Strong Negative	679	.000	
Bkm clast	Strong Positive	.676	.000	
Carb Rock	Strong Positive	.650	.000	
Tot Rock	Strong Positive	.611	.000	
Clay	Strong Positive	.595	.000	
Northing	Strong Positive	.510	.000	
SO ₄	Strong Negative	500	.000	
Fe	Strong Positive	.500	.000	
В	Strong Negative	489	.000	
Placidium	Strong Negative	487	.000	
NO ₃	Strong Positive	.478	.000	
EC	Strong Negative	466	.000	
Ni	Moderate Positive	.435	.000	
LS clast	Moderate Positive	.423	.000	
All Rock	Moderate Positive	.405	.001	
Chert Qzt	Moderate Positive	.401	.001	
Ca	Moderate Positive	.398	.001	
Grass Litter	Moderate Negative	389	.001	
pH (CaCl ₂)	Moderate Positive	.386	.001	
Moss-Lichen	Moderate Negative	369	.002	
Tot Lichen	Moderate Negative	362	.003	
Tot BSC	Moderate Negative	358	.003	
Moss	Moderate Negative	338	.005	
pH (sat. paste)	Moderate Positive	.333	.006	
pH (1:1)	Moderate Positive	.327	.007	
Aspect	Moderate Negative	326	.007	
Qtzite	Moderate Positive	.323	.008	
Cyanobacteria	Moderate Negative	321	.008	
Blue Lichen	Moderate Positive	.318	.009	
Gypsum	Moderate Negative	313	.010	
Other Rock	Moderate Negative	309	.011	
Surf horz thk cm	Weak Positive	.277	.026	
Slope	Weak Negative	276	.024	
Mn	Weak Negative	252	.040	
Zn	Weak Negative	245	.046	
Chert	Weak Positive	.244	.047	

Table 4-19b: Sur	mmary for Non-BW Inte	erspace, Surface	Data, All Sites:
Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Strong Positive	.861	.000
Ca	Strong Positive	.852	.000
Mg	Strong Positive	.586	.000
Total C	Strong Positive	.518	.000
Grass Litter	Strong Negative	505	.000
Inorganic C	Strong Positive	.500	.000
CaCO ₃	Strong Positive	.500	.000
Placidium	Strong Negative	484	.000
NO ₃	Strong Positive	.472	.000
Moisture	Moderate Positive	.444	.000
As	Moderate Positive	.435	.000
Elevation	Moderate Negative	432	.000
Clay	Moderate Positive	.401	.001
Mn	Moderate Negative	394	.001
yrInsolation	Moderate Negative	394	.001
Easting	Moderate Negative	390	.001
Bkm clast	Moderate Positive	.366	.002
Р	Moderate Negative	357	.003
Other Rock	Moderate Negative	350	.004
Со	Moderate Negative	327	.007
Na	Moderate Positive	.310	.011
Cl	Moderate Positive	.305	.012
Moss	Moderate Negative	301	.013
Other Ign	Weak Negative	292	.016
Gypsum	Weak Positive	.281	.021
All Rock	Weak Positive	.276	.024
Aspect	Weak Negative	269	.028
Carb Rock	Weak Positive	.255	.037
Moss-Lichen	Weak Negative	248	.043
Tot Lichen	Weak Negative	241	.050

Fable 4-19c : Summary for Non-BW Interspace, Surface Data, All Sites:				
Correlation to Organic C				
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value	
Total N	Strong Positive	.547	.000	
Psora	Strong Positive	.518	.000	
Carb Rock	Moderate Negative	429	.000	
рН (1:1)	Moderate Negative	427	.000	
All Rock	Moderate Negative	404	.001	
Tot Rock	Moderate Negative	404	.001	
Cyanobacteria	Moderate Positive	.400	.001	
LS clast	Moderate Negative	393	.001	
Collema	Moderate Positive	.390	.001	
pH (CaCl ₂)	Moderate Negative	390	.001	
EC	Moderate Positive	.386	.001	
B	Moderate Positive	.384	.001	
Silt	Moderate Positive	.357	.003	
Tot Lichen	Moderate Positive	.343	.005	
Moss-Lichen	Moderate Positive	.342	.005	
SO ₄	Moderate Positive	.332	.006	
Tot BSC	Moderate Positive	.319	.008	
Easting	Moderate Positive	.304	.012	
CyanoBare	Moderate Positive	.301	.013	
Elevation	Weak Positive	.289	.018	
Mg	Weak Negative	274	.025	
pH (sat. paste)	Weak Negative	266	.029	
Zn	Weak Positive	.262	.032	
Clay	Weak Negative	259	.034	
Cu	Weak Positive	.258	.035	
SS clast	Weak Negative	257	.036	
Moisture	Weak Positive	.257	.036	
P	Weak Positive	.251	.040	
Na	Weak Positive	.248	.043	
Moss	Weak Positive	.242	.480	

Table 4-19d: Summary for Non-BW Interspace, Surface Data, All Sites:				
Correlation to Litter				
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
Northing	Moderate Negative	338	.005	
Bkm clast	Weak Negative	269	.028	
Chert	Weak Negative	262	.032	

Table 4-19e: Sum	mary for Non-BW Inte	rspace, Surface !	Data, All Sites:	
Correlation to Grass Litter				
Significant	Correlation to Grass	Correlation	n-value	
Variable	Litter	coefficient	p-value	
Ca	Strong Negative	524	.000	
Fe	Strong Negative	505	.000	
Ni	Moderate Negative	433	.000	
Total C	Moderate Negative	407	.001	
Psora	Moderate Negative	395	.001	
Cu	Moderate Negative	390	.001	
Bkm clast	Moderate Negative	389	.001	
Inorganic C	Moderate Negative	389	.001	
CaCO ₃	Moderate Negative	389	.001	
Northing	Moderate Negative	371	.002	
Clay	Moderate Negative	333	.006	
Other Rock	Moderate Positive	.302	.013	
Moisture	Moderate Negative	301	.013	
Blue Lichen	Weak Negative	272	.026	
Ls clast	Weak Positive	.265	.030	
Collema	Weak Negative	262	.032	
K	Weak Positive	.259	.034	
pH (1:1)	Weak Positive	.244	.046	
Other Ign	Weak Positive	.240	.500	

Table 4-20: Spearman's Rho Non-BW Interspace, Surface Data, Bitter

 Spring

Table 4-20a: Summary for Non-BW Interspace, Surface Data, BitterSpring: Correlation to CaCO3

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.994	.000
Mn	Strong Negative	664	.003
Collema	Strong Negative	615	.007
Со	Strong Negative	593	.009
Na	Strong Negative	548	.019
Tot Lichen	Strong Negative	528	.024
Moss-Lichen	Strong Negative	528	.024
K	Strong Negative	503	.034
Cl	Strong Negative	494	.037

Table 4-20b: Summary for Non-BW Interspace, Surface Data, Bitter
 Spring: Correlation to Fe Correlation Significant **Correlation to Fe** p-value Variable coefficient Ca .000 Very Strong Positive .965 Strong Positive .748 .000 Ni Strong Positive .681 .002 Gypsum Strong Positive .633 .005 As Strong Negative -.624 .006 Total N **YrInsolation** Strong Negative -.622 .006 EC Strong Positive .581 .011 SO₄ Strong Positive .560 .016 Strong Positive .482 .043 Slope pH (1:1) Strong Negative -.474 .047

Table 4-20c: Summary for Non-BW Interspace, Surface Data, Bitter
 Spring: Correlation to Organic C Significant Correlation **Correlation to Organic C** p-value coefficient Variable Strong Negative Placidium -.526 .025 .030 LS clast Strong Negative -.512 Strong Negative -.512 CarbRock .030 AllRock Strong Negative -.494 .037

Table 4-20d: Summary for Non-BW Interspace, Surface Data, Bitter					
Spring: Correlation to Litter					
Significant Variable	Correlation to Litter	Correlation coefficient	p-value		
Aspect	Strong Negative	580	.012		
As	Strong Negative	508	.031		
Moisture	Strong Negative	506	.032		
Slope	Strong Negative	501	.034		
Table 4-20e: Sun	nmary for Non-BW Inte	rspace, Surface l	Data, Bitter		

Spring: Correlation to Grass Litter					
Significant Variable	Correlation to Grass Litter	Correlation coefficient	p-value		
Total N	Strong Positive	.614	.007		
Ca	Strong Negative	514	.029		

Springs						
Table 4-21a : Summary for Non-BW Interspace, Surface Data, Coyote						
Springs: Correlati	on to $CaCO_3$					
Significant	Correlation to CaCO. Correlation P. volu					
Variable		coefficient	I -value			
Total C	Very Strong Positive	.961	.000			
LS clast	Strong Negative	772	.000			
Easting	Strong Positive	.750	.000			
Р	Strong Negative	656	.001			
Bkm clast	Strong Positive	.649	.001			
AllRock	Strong Negative	640	.002			
TotRock	Strong Negative	640	.002			
Blue Lichecn	Strong Positive	.597	.004			
Tot Lichen	Strong Positive	.588	.005			
Moss-Lichen	Strong Positive	.588	.005			
TotBSC	Strong Positive	.588	.005			
CarbRock	Strong Negative	588	.005			
Grass Litter	Strong Negative	581	.006			
Collema	Strong Positive	.530	.013			
Bare	Strong Positive	.528	.014			
CyanoBare	Strong Positive	.528	.014			
Litter	Strong Positive	.471	.031			
Sand	Strong Positive	.471	.031			
Aspect	Moderate Positive	.442	.045			

Table 4-21: Spearman's Rho Non-BW Interspace, Surface Data, Coyote

 Springs

Table 4-21b: Sun	nmary for Non-BW	Interspa	ce, Surface	Data, Coyote
Springs: Correlati	on to Fe			
		C	annalation	

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Mg	Strong Positive	.818	.000
Ni	Strong Positive	.769	.000
Ca	Strong Positive	.743	.000
Na	Strong Positive	.645	.002
Moisture	Strong Positive	.630	.002
Surf Hrz thk cm	Strong Negative	575	.010
pH (CaCl ₂)	Strong Positive	.565	.008
SS clast	Strong Negative	464	.034
Northing	Moderate Positive	.434	.049

Table 4-21c: Summary for Non-BW Interspace, Surface Data, Coyote					
Springs: Correlation to Organic C					
Significant	Correlation to Organic C Correlation				
Variable	Correlation to Organic C	coefficient	p-value		
pH (sat. paste)	Moderate Positive	.447	.042		

Table 4-21d: Summary for Non-BW Interspace, Surface Data, Coyote					
Springs: Correlation to Litter					
Significant Variable	Correlation to Litter	Correlation coefficient	p-value		
Northing	Strong Positive	.571	.007		
Qtzite	Strong Positive	.566	.008		
Total C	Strong Positive	.562	.008		
Chert	Strong Negative	493	.023		
Inorganic C	Strong Positive	.471	.031		
	Strong Positive	.471	.031		

Table 4-21e: Summary for Non-BW Interspace, Surface Data, Coyote

 Springs: Correlation to Grass Litter

springs. conclution to Grass Enter				
Significant Variable	Correlation to Grass Litter	Correlation coefficient	p-value	
Bkm clast	Strong Negative	701	.000	
Ls clast	Strong Positive	.632	.002	
Total C	Strong Negative	584	.005	
Inorganic C	Strong Negative	581	.006	
CaCO ₃	Strong Negative	581	.006	
Zn	Strong Positive	.558	.009	
Easting	Strong Negative	533	.013	
Ca	Strong Negative	511	.018	
Р	Strong Positive	.501	.021	
Northing	Strong Negative	483	.026	
Silt	Strong Positive	.454	.039	
Sand	Strong Negative	451	.040	
Мо	Moderate Positive	.442	.045	

Table 4-22a : Summary for Non-BW Interspace, Surface Data, Gold Butte: Correlation to CaCO ₃				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.984	.000	
Clay	Strong Positive	.818	.000	
Sand	Strong Negative	773	.000	
As	Strong Positive	.738	.000	
Silt	Strong Positive	.711	.000	
Mg	Strong Positive	.585	.001	
Zn	Strong Negative	500	.007	
AllRock	Strong Negative	489	.008	
CyanoBare	Strong Positive	.486	.009	
Grass Litter	Strong Negative	472	.011	
TotBSC	Strong Positive	.461	.013	
Ca	Moderate Positive	.413	.029	
Cyanobacteria	Moderate Positive	.412	.029	
Fe	Moderate Positive	.399	.036	
Slope	Moderate Negative	398	.036	
Mn	Moderate Negative	396	.037	
Surf horz thk cm	Moderate Positive	.396	.037	
Ni	Moderate Positive	.395	.037	
TotLichen	Moderate Positive	.388	.042	

Table 4-22: Spearman's Rho Non-BW Interspace, Surface Data, Gold

 Butte

Table 4-22b: Summary for Non-BW Interspace, Surface Data, Gold			
Butte: Correlation to Fe			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.917	.000
Ca	Strong Positive	.878	.000
Grass Litter	Strong Negative	792	.000
As	Strong Positive	.673	.000
SO ₄	Strong Positive	.672	.000
Bare	Strong Negative	632	.000
В	Strong Positive	.622	.000
EC	Strong Positive	.610	.001
Moisture	Strong Positive	.600	.001
рН (1:1)	Strong Negative	596	.001
pH (CaCl ₂)	Strong Negative	574	.001
Cu	Strong Positive	.558	.002
Psora	Strong Positive	.553	.002
Cyanobacteria	Strong Positive	.524	.004
Total N	Strong Positive	.519	.005
Organic C	Strong Positive	.507	.006
Gypsum	Strong Positive	.503	.006
Total C	Strong Positive	.496	.007

Table 4-22b (continued)			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
TotRock	Strong Negative	488	.008
CarbRock	Strong Negative	488	.008
LS clast	Strong Negative	488	.008
Silt	Strong Positive	.456	.015
Sand	Moderate Negative	421	.026
TotBSC	Moderate Positive	.413	.029
Cl	Moderate Positive	.401	.035
Inorganic C	Moderate Positive	.399	.036
	Moderate Positive	.399	.036
K	Moderate Negative	394	.038
Slope	Moderate Positive	.375	.049

Table 4-22c: Summary for Non-BW Interspace, Surface Data, Gold			
Butte: Correlation	to Organic C		
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
В	Strong Positive	.842	.000
Total N	Strong Positive	.829	.000
Cu	Strong Positive	.749	.000
рН (1:1)	Strong Negative	733	.000
EC	Strong Positive	.626	.000
Psora	Strong Positive	.594	.001
SO ₄	Strong Positive	.587	.001
Collema	Strong Positive	.572	.001
TotLichen	Strong Positive	.572	.001
pH (CaCl ₂)	Strong Negative	564	.002
Moss-Lichen	Strong Positive	.557	.002
Fe	Strong Positive	.507	.006
Silt	Strong Positive	.492	.008
Grass Litter	Strong Negative	476	.010
TotBSC	Strong Positive	.453	.015
pH (sat. paste)	Strong Negative	453	.015
Na	Moderate Positive	.448	.017
Zn	Moderate Positive	.447	.017
TotRock	Moderate Negative	437	.020
Other Ign	Moderate Negative	435	.021
Sand	Moderate Negative	435	.021
Cl	Moderate Positive	.426	.024
LS clast	Moderate Negative	425	.024
CarbRock	Moderate Negative	425	.024
Moisture	Moderate Positive	.419	.026
Ni	Moderate Positive	.381	.045

Table 4-22d: Summary for Non-BW Interspace, Surface, Gold Butte:			
Correlation to Litter			
Significant Variable	Correlation to Litter	Correlation coefficient	p-value
Elevation	Moderate Negative	432	.022
Other rock	Moderate Positive	.416	.028
LS clast	Moderate Positive	.408	.031
CarbRock	Moderate Positive	.408	.031
TotRock	Moderate Positive	.389	.041

Table 4-22e: Sum	mary for Non-BW Inte	rspace, Surface I	Data, Gold		
Butte: Correlation to Grass Litter					
Significant	Correlation to Grass	Correlation	n valuo		
Variable	Litter	coefficient	p-value		
Ca	Strong Negative	802	.000		
Fe	Strong Negative	792	.000		
Ni	Strong Negative	789	.000		
SO ₄	Strong Negative	718	.000		
Psora	Strong Negative	678	.000		
TotRock	Strong Positive	.674	.000		
LS clast	Strong Positive	.664	.000		
CarbRock	Strong Positive	.664	.000		
Moisture	Strong Negative	655	.000		
As	Strong Negative	655	.000		
Cyanobacteria	Strong Negative	633	.000		
EC	Strong Negative	617	.000		
pH (CaCl ₂)	Strong Positive	.575	.001		
B	Strong Negative	572	.001		
Bare	Strong Positive	.565	.002		
pH (1:1)	Strong Positive	.549	.002		
Cu	Strong Negative	545	.003		
Collema	Strong Negative	543	.003		
Total C	Strong Negative	543	.003		
Silt	Strong Negative	513	.005		
Sand	Strong Positive	.502	.007		
Gypsum	Strong Negative	495	.007		
TotBSC	Strong Negative	490	.008		
Other rock	Strong Positive	.477	.010		
Organic C	Strong Negative	476	.010		
Inorganic C	Strong Negative	472	.011		
	Strong Negative	472	.011		
Total N	Strong Negative	460	.014		
TotLichen	Moderate Negative	445	.018		
Clay	Moderate Negative	436	.021		
Moss-Lichen	Moderate Negative	407	.031		
K	Moderate Positive	.406	.032		
Cl	Moderate Negative	399	.036		
Slope	Moderate Negative	396	.037		
Other Ign	Moderate Positive	.390	.040		
P	Moderate Positive	.385	.043		
All Sites Table 4-23a: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to CaCO3 Significant Variable Correlation to CaCO3 Correlation coefficient P-value Total C Very Strong Positive .997 .000 Bkm clast Strong Positive .755 .000 Clay Strong Positive .752 .000 CarbRock Strong Positive .709 .000 Mg Strong Positive .669 .000 pl (CaCl ₂) Strong Positive .669 .000 Strong Negative 664 .000 B Strong Positive .612 .000 BueLichen Strong Positive .612 .000 Rottechen Strong Positive .612 .000 Northing Strong Negative .586 .000 Northing Strong Positive .512 .000 Strong Negative .581 .000 .549 .001 No_drate Strong Negative .549 .001 .549 .001 No_drate Negative .549 .001	Table 4-23: Spearman's Rho Potential Habitat Interspace, Surface Data,				
--	--	----------------------------------	---------------------------------------	----------------	--
Table 4-23a: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to CaCO3 Significant Variable Correlation coefficient P-value Significant Variable Correlation coefficient P-value Total C Very Strong Positive .755 .000 CarbRock Strong Positive .709 .000 CarbRock Strong Positive .709 .000 CarbRock Strong Positive .703 .000 Strong Positive .703 .000 Strong Negative .687 .000 Strong Negative .687 .000 ButLichen Strong Positive .669 .000 Strong Positive .612 .000 Strong Positive .640 .000 Strong Positive .612 .000	All Sites				
Table 4-23a: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to CaCO3 Correlation coefficient P-value Significant Variable Correlation to CaCO3 Correlation coefficient P-value Total C Very Strong Positive .755 .000 Bkm clast Strong Positive .752 .000 CarbRock Strong Positive .703 .000 Mg Strong Positive .703 .000 SQ Strong Positive .669 .000 SQ Strong Negative .669 .000 SQ Strong Negative .669 .000 BuLichen Strong Negative .662 .000 BtuLichen Strong Positive .612 .000 TotRock Strong Positive .612 .000 Castat Strong Positive .586 .0000 Gypsum Strong Positive .549 .001 No3 Strong Positive .549 .001 Strong Positive .549 .001 .532 .001 Stast Strong Regative .532 .001 <th></th> <th></th> <th></th> <th></th>					
All Sites: Correlation to CaCO3 Correlation to CaCO3 Correlation coefficient P-value Total C Very Strong Positive .997 .0000 Bkm clast Strong Positive .755 .0000 CarbRock Strong Positive .709 .0000 Mg Strong Positive .703 .0000 pH (CaCL) Strong Positive .669 .0000 Strong Positive .669 .0000 pH (CaCL) Strong Positive .669 .0000 Strong Regative .669 .0000 BU .669 .0000 BU Strong Regative .662 .0000 BU .6612 .0000 Bu Strong Regative .612 .0000 BO .612 .0000 Northing Strong Regative .586 .0000 BO .581 .0001 Strong Regative .581 .0001 DO .549 .001 No3 Strong Regative .549 .001 DO .549 .001	Table 4-23a: Sun	nmary for Potential Hab	itat Interspace, S	urface Data,	
Significant Variable Correlation to CaCO ₃ Correlation coefficient P-value Total C Very Strong Positive .997 .0000 Bkn clast Strong Positive .755 .0000 Clay Strong Positive .752 .0000 CarbRock Strong Positive .703 .0000 PH (CaCl ₂) Strong Positive .660 .0000 Strong Negative 687 .0000 B1 (11) Strong Positive .669 .0000 BCC Strong Negative 640 .0000 BCC Strong Negative .612 .0000 BteLichen Strong Positive .612 .0000 Northing Strong Positive .512 .0000 Northing Strong Positive .549 .001 Not Strong Positive .549 .001 Noj Strong Positive .549 .001 Organic C Strong Negative .532 .001 Strong Negative .433 .0	All Sites: Correla	tion to CaCO ₃			
Variable VariableCorrelation to CaCO3 coefficientP-value coefficientTotal CVery Strong Positive.997.000Bkm clastStrong Positive.755.000ClayStrong Positive.752.000MgStrong Positive.709.000MgStrong Positive.709.000MgStrong Positive.690.000SO4Strong Negative.687.000BH (1:1)Strong Negative.669.000BuLichenStrong Negative.669.000BuLichenStrong Positive.612.000TotRockStrong Positive.612.000BuLichenStrong Positive.612.000NorthingStrong Positive.612.000NorthingStrong Negative.588.000GypsumStrong Negative.549.001NO3Strong Negative.549.001NO4Strong Negative.532.001RastingStrong Negative.441.003pH (sat. paste)Strong Positive.443.000StopeStrong Negative.441.003pH (sat. paste)Strong Negative.441.003pH (sat. paste)Strong Positive.338.030GastModerate Positive.343.009NiModerate Positive.343.009NiModerate Positive.346.033GastModerate Positive.36	Significant	5	Correlation		
VariableContextureTotal CVery Strong Positive.755Bkm clastStrong Positive.755ClayStrong Positive.709OCarbRockStrong Positive.709OD0MgStrong Positive.703OD0PH (CaCl2)Strong Positive.669SO4Strong Negative.667OD0BStrong Negative.667OD0BStrong Negative.669BStrong Negative.6625OD0ECStrong NegativeCStrong Positive.612OD00ECStrong PositiveBueLichenStrong PositiveOttokckStrong PositiveOttokckStrong PositiveOttokckStrong PositiveOttokckStrong PositiveStrong Negative.586OD00ElevationStrong PositiveStrong Negative.549OO1NO3Strong PositiveOrganic CStrong NegativeStrong Negative.431OuogPH (sat. paste)Strong NegativeModerate Positive.447OO7FeModerate NegativeModerate PositiveAd0CoModerate NegativeAd0NiModerate PositiveAd3.009NiModerate NegativeAd40Ad54Moderate NegativeAd54Ad0CoModerate	Variabla	Correlation to CaCO ₃	coefficient	P-value	
Total Construct 1000 Blam clast Strong Positive 755 000 Clay Strong Positive 7752 000 CarbRock Strong Positive 7709 0.000 Mg Strong Positive 7703 0.000 PH (CaCl ₂) Strong Positive 669 0.000 Strong Negative 6640 0.000 B Strong Negative 6640 0.000 BC Strong Negative 6640 0.000 BueLichen Strong Positive .612 .000 BueLichen Strong Positive .612 .000 Repain Strong Positive .612 .000 Clast Strong Negative 586 .000 Organic C Strong Negative 581 .000 Crasting Strong Negative 549 .001 Organic C Strong Negative 532 .001 Easting Strong Negative 441 .003 pH (sat. paste)	Total C	Very Strong Positive	997	000	
Since1000ClayStrong Positive1752CorbRockStrong Positive1709MgStrong Positive1709PH (CaCl2)Strong Positive669SO4Strong Negative687PH (1:1)Strong Positive.669BStrong Negative640CarbRockStrong Negative640BueLichenStrong Positive.612OtoRockStrong Positive.612OtoRockStrong Positive.612OtoRockStrong Positive.612OtoRockStrong Positive.586OtoRockStrong Positive.549OtoToRockStrong Positive.549Otog positive.549.001NO3Strong Positive.549NO4Strong Negative.539NO3Strong Regative.491O03Strong Regative.491O04MoistureStrong NegativeStrong Negative.441O07FeModerate Negative.441O07FeModerate Positive.433O09NiModerate PositiveSt clastModerate PositiveAdd.366O30CaModerate Negative363.032BareModerate NegativeAdderate Positive.366O30CaModerate Negative373.048TableCorrelation to FeSignifica	Rkm clast	Strong Positive	755	000	
CarbRockStrong Positive.709.000MgStrong Positive.703.000pH (CaCL)Strong Positive.669.000SO4Strong Negative.687.000pH (1:1)Strong Positive.6669.000BStrong Negative.640.000ECStrong Negative.625.000BlueLichenStrong Positive.612.000TotRockStrong Positive.612.000NorthingStrong Positive.612.000NorthingStrong Positive.586.000GypsumStrong Negative.586.000Ls clastStrong Positive.549.001NO3Strong Positive.549.001Organic CStrong Negative.532.001SlopeStrong Regative.532.001SlopeStrong Regative.441.003pH (sat. paste)Strong Regative.441.007FeModerate Negative.443.009NiModerate Negative.422.011CoModerate Negative.408.031CaModerate Negative.366.030Grass LitterModerate Negative.361.033PModerate Negative.361.033CaModerate Negative.361.033PModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Strong Positive.34	Clav	Strong Positive	.752	.000	
Mg Strong Positive 7.03 0.000 pH (CaCl ₂) Strong Positive .690 .000 SQ ₄ Strong Negative .667 .000 pH (1:1) Strong Negative .669 .000 B Strong Negative .640 .000 EC Strong Negative .612 .000 BucLichen Strong Positive .612 .000 Northing Strong Positive .612 .000 Regative .586 .000 .549 .001 Northing Strong Negative .549 .001 LS clast Strong Positive .549 .001 Organic C Strong Negative .539 .001 Easting Strong Negative .491 .003 pH (sat. paste) Strong Regative .441 .007 Fe Moderate Negative .441 .007 Ni Moderate Negative .422 .011 Co Moderate Negative .423	CarbRock	Strong Positive	.709	.000	
Diff (CaCl2)Strong Positive1.011.01PH (CaCl2)Strong Positive6.690.000SO4Strong Negative687.000PH (1:1)Strong Positive6.669.000BStrong Negative640.000ECStrong Negative625.000BlueLichenStrong Positive.612.000TotRockStrong Positive.612.000NorthingStrong Positive.612.000QysumStrong Negative586.000Ls clastStrong Negative.586.000GysumStrong Positive.549.001NO3Strong Positive.549.001NO3Strong Negative.539.001EastingStrong Negative.532.001SlopeStrong Negative.431.003PH (sat. paste)Strong Negative.440.003MinModerate Negative.441.007FeModerate Positive.442.011CoModerate Positive.442.011CoModerate Positive.368.030CaModerate Positive.368.030Grass LitterModerate Positive.361.033PModerate Negative.358.035CollemaModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data,All Sites: Correlation to FeSignificant VariableCorrelati	Mg	Strong Positive	.703	.000	
StorStrong Negative032SO4Strong Negative687pH (1:1)Strong Positive.669BStrong Negative640BStrong Negative625BueLichenStrong Positive.612DottRockStrong Positive.612NorthingStrong Positive.612OwnorthingStrong Positive.612Strong Negative586OwnorthingStrong NegativeStrong Negative586OwnorthingStrong PositiveStrong Positive.549OotactStrong PositiveStrong Negative539Organic CStrong NegativeStrong Negative491OotagStrong NegativeStore Positive.4401OwnorNo4MoistureStrong NegativeModerate Negative441OwnModerate PositiveModerate Positive.4425OutModerate PositiveAtter.030CaModerate PositiveAtter.366Organic CStrong NegativeStateModerate PositiveAtter.007FeModerate PositiveAtter.007FeModerate PositiveAtter.030CaModerate NegativeAtter.031CoModerate NegativeAtter.032BareModerate NegativeAtter.033Cale </th <th>nH (CaCl₂)</th> <th>Strong Positive</th> <th>.690</th> <th>.000</th>	nH (CaCl ₂)	Strong Positive	.690	.000	
Def (1:1)Strong Positive	SO ₄	Strong Negative	687	.000	
B Strong Negative 640 .000 EC Strong Negative 625 .000 BueLichen Strong Positive .612 .000 TotRock Strong Positive .612 .000 Northing Strong Positive .612 .000 Rock Strong Negative .586 .000 Gypsum Strong Negative .586 .000 Levation Strong Negative .581 .000 LS clast Strong Positive .549 .001 No ₃ Strong Negative .532 .001 Casting Strong Negative .432 .001 Slope Strong Negative .440 .003 pH (sat. paste) Strong Positive .443 .007 Fe Moderate Positive .443 .007 Fe Moderate Negative .422 .011 Co Moderate Negative .422 .011 Co Moderate Negative .368 .030 Caa Moderate Negative .366 .030 <td< th=""><th>nH (1:1)</th><th>Strong Positive</th><th>.669</th><th>.000</th></td<>	nH (1:1)	Strong Positive	.669	.000	
ECStrong Negative625.000BlueLichenStrong Positive.612.000TotRockStrong Positive.612.000NorthingStrong Positive.612.000Regative586.000ElevationStrong Negative586.000GypsumStrong Negative581.000LS clastStrong Positive.549.001NO3Strong Positive.549.001Organic CStrong Negative532.001EastingStrong Negative532.001SlopeStrong Negative491.003pe Strong Negative491.003ph (sat. paste)Strong Positive.441.007FeModerate Negative441.007FeModerate Negative422.011CoModerate Negative433.009NiModerate Positive.425.011CoModerate Negative408.015St clastModerate Positive.368.030Grass LitterModerate Positive.368.033PModerate Negative358.035CollemaModerate Negative358.035CollemaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data,All Sites: Correlation to FeSignificant VariableCorrelation to FeCorrelation coefficient337.048	B	Strong Negative	640	.000	
BlueLichenStrong Positive.1.12.000TotRockStrong Positive.612.000NorthingStrong Negative.512.000NorthingStrong Negative.586.000GypsumStrong Negative.586.000OrganicStrong Negative.549.001NO3Strong Negative.549.001Organic CStrong Negative.532.001SlopeStrong Negative.532.001SlopeStrong Negative.480.004MoistureStrong Negative.441.003pH (sat. paste)Strong Positive.443.007FeModerate Negative.442.011CoModerate Negative.422.011CoModerate Negative.422.011CoModerate Negative.422.012ZnModerate Negative.423.030Gaass LitterModerate Negative.366.030Grass LitterModerate Negative.363.032BareModerate Negative.358.035CollemaModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	EC	Strong Negative	625	.000	
TotRockStrong Positive.612.000NorthingStrong Positive.612.000NorthingStrong Positive.586.000GypsumStrong Negative.586.000LS clastStrong Positive.549.001NO3Strong Positive.549.001Organic CStrong Negative.539.001SlopeStrong Negative.532.001SlopeStrong Negative.491.003pH (sat. paste)Strong Negative.441.005MnModerate Negative.441.007FeModerate Positive.443.009NiModerate Positive.442.011CoModerate Negative.442.011CoModerate Negative.408.015SS clastModerate Positive.368.030Gaase LitterModerate Positive.366.030Grass LitterModerate Negative.358.035CollemaModerate Negative.337.044CvanobacteriaModerate Negative.337.044Charles Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001MagStrong Positive.554.001MagStrong Positive.554.001MagStrong Positive.554.001	BlueLichen	Strong Positive	.612	.000	
NorthingStrong Positive0.6120.000ElevationStrong Negative5860.000GypsumStrong Negative5810.000LS clastStrong Positive.5490.01NO3Strong Positive.5490.01Organic CStrong Negative5320.001EastingStrong Negative5320.001EastingStrong Negative5320.001EastingStrong Negative4910.003pH (sat. paste)Strong Positive.4400.004MoistureStrong Negative4410.005MnModerate Negative4470.007FeModerate Positive.4330.009NiModerate Positive.4250.011CoModerate Negative4480.012ZnModerate Negative4480.015SS clastModerate Positive.3680.30CaModerate Positive.3660.030BareModerate Negative3630.032BareModerate Negative3580.035CollemaModerate Negative3370.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientNiStrong Positive.841.000CaStrong Positive.554.001ClavStrong Positive.554.001MgStrong Positive.554.001 <th>TotRock</th> <th>Strong Positive</th> <th>.612</th> <th>.000</th>	TotRock	Strong Positive	.612	.000	
Bit or g Negative	Northing	Strong Positive	.612	.000	
GypsumStrong Negative581.000LS clastStrong Positive.549.001NO3Strong Positive.549.001Organic CStrong Negative.539.001EastingStrong Negative.532.001SlopeStrong Negative.491.003pH (sat. paste)Strong Negative.480.004MoistureStrong Negative.441.007FeModerate Negative.447.007FeModerate Positive.433.009NiModerate Negative.422.011CoModerate Negative.422.011CoModerate Negative.408.015SS clastModerate Positive.368.030CaModerate Positive.363.032BareModerate Negative.361.033PModerate Negative.347.041CyanobacteriaModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClavStrong Positive.554.001	Elevation	Strong Negative	586	.000	
LS clastStrong Positive.549.001NO3Strong Positive.549.001Organic CStrong Negative.539.001EastingStrong Negative.532.001SlopeStrong Negative.491.003pH (sat. paste)Strong Positive.480.004MoistureStrong Negative.461.005MnModerate Negative.447.007FeModerate Positive.433.009NiModerate Positive.433.009NiModerate Negative.422.011CoModerate Negative.422.011SS clastModerate Positive.368.030CaModerate Positive.368.030Grass LitterModerate Positive.363.032BareModerate Negative.358.035CollemaModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClavStrong Positive.554.001	Gypsum	Strong Negative	581	.000	
NO3Strong Positive.549.001Organic CStrong Negative539.001EastingStrong Negative532.001SlopeStrong Negative491.003pH (sat. paste)Strong Positive.480.004MoistureStrong Negative461.005MnModerate Negative447.007FeModerate Positive433.009NiModerate Positive425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive368.030CaModerate Positive368.030Grass LitterModerate Positive363.032BareModerate Negative358358OllemaModerate Negative358358CollemaModerate Negative358353CollemaModerate Negative337448Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation to FeSignificant VariableCorrelation to FeCorrelation coefficientp-valueMiStrong Positive354000CaStrong Positive354001ClavStrong Positive354001	LS clast	Strong Positive	.549	.001	
Organic CStrong Negative539.001EastingStrong Negative532.001SlopeStrong Negative491.003pH (sat. paste)Strong Positive.480.004MoistureStrong Negative461.005MnModerate Negative447.007FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.368.030Grass LitterModerate Negative363.032BareModerate Negative368.035CollemaModerate Negative358.035CollemaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive777.000MgStrong Positive777.000MgStrong Positive777.001ClavStrong Positive554.001	NO ₃	Strong Positive	.549	.001	
BastingStrong Negative532.001SlopeStrong Negative491.003pH (sat. paste)Strong Positive.480.004MoistureStrong Negative461.005MnModerate Negative447.007FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative358.035CollemaModerate Negative337.044CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001MgStrong Positive.554.001	Organic C	Strong Negative	539	.001	
SlopeStrong Negative491.003pH (sat. paste)Strong Positive.480.004MoistureStrong Negative461.005MnModerate Negative447.007FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative358.035CollemaModerate Negative337.044CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001MgStrong Positive.554.001	Easting	Strong Negative	532	.001	
PH (sat. paste)Strong Positive.480.004MoistureStrong Negative.461.005MnModerate Negative.447.007FeModerate Positive.443.009NiModerate Positive.425.011CoModerate Negative.422.012ZnModerate Negative.422.012SS clastModerate Negative.408.015SS clastModerate Positive.368.030GammaModerate Positive.366.030Grass LitterModerate Negative.363.032BareModerate Negative.361.033PModerate Negative.361.035CollemaModerate Negative.337.044CyanobacteriaModerate Negative.337.044Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation to FeSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	Slope	Strong Negative	491	.003	
MoistureStrong Negative461.005MnModerate Negative447.007FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative.425.011CoModerate Negative.422.012ZnModerate Negative.408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative358.035CollemaModerate Negative337.044CyanobacteriaModerate Negative337.044Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	pH (sat. paste)	Strong Positive	.480	.004	
MnModerate Negative447.007FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative363.032BareModerate Negative358.035CollemaModerate Negative337.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	Moisture	Strong Negative	461	.005	
FeModerate Positive.433.009NiModerate Positive.425.011CoModerate Negative.422.012ZnModerate Negative.408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative.363.032BareModerate Positive.361.033PModerate Negative.358.035CollemaModerate Negative.347.041CyanobacteriaModerate Negative.337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	Mn	Moderate Negative	447	.007	
NiModerate Positive.425.011CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Positive.361.033PModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.554.001	Fe	Moderate Positive	.433	.009	
CoModerate Negative422.012ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative.361.033PModerate Negative358.035CollemaModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive841.000CaStrong Positive777.000MgStrong Positive554.001ClayStrong Positive554.001	Ni	Moderate Positive	.425	.011	
ZnModerate Negative408.015SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Negative.361.033PModerate Negative.358.035CollemaModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation to FeSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.554.001	Со	Moderate Negative	422	.012	
SS clastModerate Positive.368.030CaModerate Positive.366.030Grass LitterModerate Negative.363.032BareModerate Positive.361.033PModerate Negative.361.033PModerate Negative.358.035CollemaModerate Negative.347.041CyanobacteriaModerate Negative.337.048Table 4-23b:Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.554.001	Zn	Moderate Negative	408	.015	
CaModerate Positive.366.030Grass LitterModerate Negative363.032BareModerate Positive.361.033PModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b:Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.554.001	SS clast	Moderate Positive	.368	.030	
Grass LitterModerate Negative363.032BareModerate Positive.361.033PModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b:Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.554.001ClayStrong Positive.554.001	Ca	Moderate Positive	.366	.030	
BareModerate Positive.361.033PModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Grass Litter	Moderate Negative	363	.032	
PModerate Negative358.035CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Bare	Moderate Positive	.361	.033	
CollemaModerate Negative347.041CyanobacteriaModerate Negative337.048Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Р	Moderate Negative	358	.035	
CyanobacteriaModerate Negative337.048Table 4-23b:Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeCorrelation coefficientp-valueSignificant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Collema	Moderate Negative	347	.041	
Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to FeSignificant VariableCorrelation to FeCorrelation coefficientNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Cyanobacteria	Moderate Negative	337	.048	
Table 4-23b: Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to Fe Correlation coefficient p-value Ni Strong Positive .841 .000 Ca Strong Positive .777 .000 Mg Strong Positive .554 .001 Clay Strong Positive .459 .006	T.LL 4 221 G		· · · · · · · · · · · · · · · · · · ·		
Significant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	All Sites: Correla	nmary for Potential Hat	oitat Interspace, S	urface Data,	
Significant VariableCorrelation to FeCorrelation coefficientp-valueNiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Significant		Correlation		
NiStrong Positive.841.000CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Variahla	Correlation to Fe	coefficient	p-value	
CaStrong Positive.777.000MgStrong Positive.554.001ClayStrong Positive.459.006	Ni	Strong Positive	.841	.000	
MgStrong Positive	Ca	Strong Positive	777	000	
Clay Strong Positive 459 006	<u>са</u> Mg	Strong Positive	554	001	
	Clav	Strong Positive	.459	.006	

Table 4-23b (continued)				
Mn	Strong Negative	452	.006	
Elevation	Strong Negative	450	.007	
Easting	Moderate Negative	441	.008	
Total C	Moderate Positive	.438	.008	
Inorganic C	Moderate Positive	.433	.009	
CaCO ₃	Moderate Positive	.433	.009	
NO ₃	Moderate Positive	.431	.010	
CarbRock	Moderate Positive	.416	.013	
Bkm clast	Moderate Positive	.396	.018	
LS clast	Moderate Positive	.390	.020	
Р	Moderate Negative	365	.031	
Co	Moderate Negative	348	.041	
Placidium	Moderate Negative	335	.049	
Total N	Moderate Negative	334	.050	
Table 4 22 a. Sum	many for Detential Hab	tot Interna og	Sumfa an Data	
Table 4-25C: Sum	intary for Potential Hab	nat interspace, S	surface Data,	
All Sites: Correlat	tion to Organic C			
Significant	Correlation to Organic C	Correlation	n-voluo	
Variable	Correlation to Organic C	coefficient	p-value	
Total N	Strong Positive	.652	.000	
B	Strong Positive	.650	.000	
Moss-Lichen	Strong Positive	.615	.000	
TotLichen	Strong Positive	.614	.000	
Psora	Strong Positive	.568	.000	
pH (1:1)	Strong Negative	567	.000	
Silt	Strong Positive	.558	.000	
Placidium	Strong Positive	.557	.001	
Inorganic C	Strong Negative	539	.001	
CaCO ₃	Strong Negative	539	.001	
TotBSC	Strong Positive	.529	.001	
pH (CaCl ₂)	Strong Negative	515	.002	
Total C	Strong Negative	503	.002	
Collema	Strong Positive	.501	.002	
SO ₄	Strong Positive	.500	.002	
AllRock	Strong Negative	495	.003	
EC	Strong Positive	.495	.003	
Р	Strong Positive	.476	.004	
Bkm Clast	Strong Negative	464	.005	
Mg	Moderate Negative	438	.008	
CarbRock	Moderate Negative	423	.011	
Cyanobacteria	Moderate Positive	.418	.013	
Sand	Moderate Negative	405	.016	
TotRock	Moderate Negative	402	.017	
Easting	Moderate Positive	.402	.017	
Zn	Moderate Positive	.384	.023	
Elevation	Moderate Positive	.361	.033	
Cu	Moderate Positive	.360	.034	
LS clast	Moderate Negative	- 337	047	

Table 4-23d : Summary for Potential Habitat Interspace, Surface Data, All Sites: Correlation to Litter				
Significant VariableCorrelation to LitterCorrelation coefficientp-value				
As	Moderate Positive	.400	.017	

Table 4-23e: Summary for Potential Habitat Interspace, Surface Data All				
Sites: Correlation	to Grass Litter			
Significant	Correlation to Grass	Correlation	n voluo	
Variable	Litter	coefficient	p-value	
Northing	Strong Negative	485	.003	
Clay	Strong Negative	483	.003	
К	Strong Positive	.470	.004	
Psora	Moderate Negative	411	.014	
Ca	Moderate Negative	405	.016	
Total C	Moderate Negative	375	.027	
Inorganic C	Moderate Negative	363	.032	
CaCO ₃	Moderate Negative	363	.032	
Siltstone	Moderate Positive	.351	.039	
Ni	Moderate Negative	336	.049	

Table 4-24: Spearman's Rho Potential Habitat Interspace, Surface Data,

 Bitter Spring

Table 4-24a: Summary for Potential Habitat Interspace, Surface Data, Bitter Spring: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.964	.000
Organic C	Strong Negative	786	.036
Collema	Strong Negative	768	.044
TotLichen	Strong Negative	768	.044
Moss-Lichen	Strong Negative	768	.044

Table 4-24b: Summary for Potential Habitat Interspace, Surface Data,Bitter Spring: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ca	Very Strong Positive	.964	.000
Clay	Strong Positive	.893	.007
YrInsolation	Strong Negative	821	.023

Table 4-24c: Summary for Potential Habitat Interspace, Surface Data,Bitter Spring: Correlation to Organic C

1 0	U		
Significant	Correlation to Organic C	Correlation	p-value
Variable		coefficient	P · ······
AllRock	Strong Negative	857	.014
Collema	Strong Positive	.808	.028
TotLichen	Strong Positive	.808	.028
Moss-Lichen	Strong Positive	.808	.028
Inorganic C	Strong Negative	786	.036
	Strong Negative	786	.036

Table 4-24d: Summary for Potential Habitat Interspace, Surface Data,

 Bitter Spring: Correlation to Litter

Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
Easting	Strong Positive	.845	.017	
Clay	Strong Positive	.811	.027	
Ni	Strong Positive	.775	.041	

Table 4-24e: Summary for Potential Habitat Interspace, Surface Data,Bitter Spring: Correlation to Grass Litter

1 0			
Significant	Correlation to Grass	Correlation	n voluo
Variable	Litter	coefficient	p-value
	NONE		

Table 4-25: Spearman's Rho Potential Habitat Interspace, Surface Data, Control of the second secon				
Coyote Springs				
Table 4-25a: Sum	nmary for Potential Hab	itat Interspace, S	Surface Data,	
Coyote Springs: C	Correlation to CaCO ₃			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.988	.000	
Bkm clast	Strong Positive	.821	.004	
LS clast	Strong Negative	778	.008	
NO ₃	Strong Positive	.729	.017	
Cl	Strong Positive	.697	.025	
Table 4-25b: Sun	nmary for Potential Hab	itat Interspace. S	Surface Data.	
Covote Springs: C	Correlation to Fe	F , ~	,	
Significant		Correlation	_	
Variable	Correlation to Fe	coefficient	p-value	
AllRock	Strong Negative	794	.006	
TotRock	Strong Negative	794	.006	
Northing	Strong Positive	.788	.007	
CarbRock	Strong Negative	758	.011	
SurfHorzThk cm	Strong Negative	753	.012	
Collema	Strong Positive	.729	.017	
TotLichen	Strong Positive	.709	.022	
Moss-Lichen	Strong Positive	.709	.022	
TotBSC	Strong Positive	.709	.022	
Na	Strong Positive	.697	.025	
Bare	Strong Positive	.687	.028	
CyanoBare	Strong Positive	.687	.028	
Moisture	Strong Positive	.648	.043	
Table 4-25c: Sum	mary for Potential Habi	itat Interspace, S	Surface Data,	
Coyote Springs: C	Correlation to Organic C			
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value	
pH (sat. paste)	Strong Positive	.721	.019	
Slope	Strong Positive	.721	.019	
EC	Strong Negative	675	.032	
Table 4-25d: Sun	nmary for Potential Hab	itat Interspace, S	Surface Data,	
Coyote Springs: Correlation to Litter				
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
	NONE			
Table 4-25e: Summary for Potential Habitat Interspace. Surface Data				
Coyote Springs: C	Correlation to Grass Litte	er		
Significant	Correlation to Grass	Correlation	p-value	
Variable	Litter	coefficient		

Table 4-26a: Sun	nmary for Potential Hab	itat Interspace, S	Surface Data,
Gold Butte: Corre	elation to CaCO ₃		
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.986	.000
Clay	Strong Positive	.881	.000
pH (CaCl ₂)	Strong Positive	.750	.000
Mg	Strong Positive	.737	.000
Sand	Strong Negative	727	.001
Moisture	Strong Negative	719	.001
pH (1:1)	Strong Positive	.697	.001
Zn	Strong Negative	679	.002
Silt	Strong Positive	.671	.002
As	Strong Positive	.647	.004
Slope	Strong Negative	631	.005
CyanoBare	Strong Positive	.570	.013
Gypsum	Strong Negative	558	.016
AllRock	Strong Negative	533	.023
pH (sat. paste)	Strong Positive	.530	.024
Cyanobacteria	Strong Positive	.490	.039

Table 4-26: Spearman's Rho Potential Habitat Interspace, Surface Data,

 Gold Butte

Table 4-26b: Summary for Potential Habitat Interspace, Surface Data,					
Gold Butte: Corre	Gold Butte: Correlation to Fe				
Significant Variable	Correlation to Fe	Correlation coefficient	p-value		
Ni	Very Strong Positive	.915	.000		
Ca	Strong Positive	.841	.000		
Grass Litter	Strong Negative	581	.011		
Bare	Strong Negative	562	.015		

Table 4-26c: Summary for Potential Habitat Interspace, Surface Data,

 Gold Butte: Correlation to Organic C

Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
B	Strong Positive	.814	.000
Total N	Strong Positive	.736	.001
Cu	Strong Positive	.688	.002
Zn	Strong Positive	.562	.015
pH (1:1)	Strong Negative	556	.017
Na	Strong Positive	.556	.017

Table 4-26d: Summary for Potential Habitat Interspace, Surface Data,					
Gold Butte: Corre	Gold Butte: Correlation to Litter				
Significant	Correlation to Litter	Correlation	p-value		
Variable		coefficient	P ······		
LS clast	Strong Positive	.546	.019		
CarbRock	Strong Positive	.546	.019		
TotRock	Strong Positive	.518	.028		
SO ₄	Strong Positive	.493	.038		
NO ₃	Strong Positive	.478	.045		
Ni	Strong Positive	.471	.048		

Table 4-26e: Summary for Potential Habitat Interspace, Surface Data,					
Gold Butte: Corre	Gold Butte: Correlation to Grass Litter				
Significant Correlation to Grass Correlation p-value					
Variable	Litter	coefficient	_		
Fe	Strong Negative	581	.011		
Ca	Strong Negative	550	.018		
Psora	Strong Negative	534	.022		
Cyanobacteria	Strong Negative	504	.033		
Bare	Strong Positive	.485	.041		

Sites				
Table 4-27a: Sum	mary for Non-Habitat	Interspace, Surfa	ce Data, All	
Sites: Correlation	to CaCO ₃			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.994	.000	
Mg	Strong Positive	.815	.000	
Easting	Strong Negative	803	.000	
Elevation	Strong Negative	795	.000	
Placidium	Strong Negative	687	.000	
AllRock	Strong Positive	.677	.000	
Fe	Strong Positive	.650	.000	
CarbRock	Strong Positive	.645	.000	
SurfHorzThk cm	Strong Positive	.640	.000	
TotRock	Strong Positive	.627	.000	
Bkm clast	Strong Positive	.572	.001	
Moss-Lichen	Strong Negative	545	.001	
TotBSC	Strong Negative	545	.001	
TotLichen	Strong Negative	536	.001	
Qtzite	Strong Positive	.533	.001	
Ni	Strong Positive	.531	.001	
Grass Litter	Strong Negative	527	.002	
ChertQrzt	Strong Positive	.523	.002	
LS clast	Strong Positive	.508	.003	
Moss	Strong Negative	474	.005	
Ca	Strong Positive	.471	.006	
Other rock	Strong Negative	468	.006	
Other Ign	Strong Negative	452	.008	
Northing	Moderate Positive	.449	.009	
Aspect	Moderate Negative	430	.012	
Moisture	Moderate Positive	.402	.020	
NO ₃	Moderate Positive	.395	.023	
Clay	Moderate Positive	.380	.029	
B	Moderate Negative	369	.035	
Cu	Moderate Positive	.359	.040	
As	Moderate Positive	.350	.046	

 Table 4-27: Spearman's Rho Non-Habitat Interspace, Surface Data, All

Table 4-27b: Summary for Non-Habitat Interspace, Surface Data, All				
Sites: Correlation to Fe				
Significant	ignificant Control Correlation			
Variable	Correlation to Fe	coefficient	p-value	
Ca	Strong Positive	.879	.000	
Ni	Strong Positive	.878	.000	
Mg	Strong Positive	.752	.000	
Placidium	Strong Negative	692	.000	
As	Strong Positive	.690	.000	

Table 4-27b (continued)			
Total C	Strong Positive	.664	.000
Grass Litter	Strong Negative	658	.000
Inorganic C	Strong Positive	.650	.000
CaCO ₃	Strong Positive	.650	.000
Elevation	Strong Negative	648	.000
NO ₃	Strong Positive	.638	.000
Easting	Strong Negative	575	.000
AllRock	Strong Positive	.559	.001
Moisture	Strong Positive	.556	.001
TotBSC	Strong Negative	519	.002
CarbRock	Strong Positive	.518	.002
Moss-Lichen	Strong Negative	512	.002
YrInsolation	Strong Negative	510	.002
TotLichen	Strong Negative	508	.003
Other rock	Strong Negative	506	.003
Aspect	Strong Negative	473	.005
Clay	Strong Positive	.457	.008
Other Ign	Moderate Negative	444	.010
LS clast	Moderate Positive	.440	.010
TotRock	Moderate Positive	.436	.011
Qtzite	Moderate Positive	.422	.014
Gypsum	Moderate Positive	.409	.018
Cl	Moderate Positive	.389	.025
Bkm clast	Moderate Positive	.379	.030
Moss	Moderate Negative	377	.030
Р	Moderate Negative	364	.037
SurfHorzThk cm	Moderate Positive	.363	.045

Table 4-27c: Sum	nmary for Non-Habitat I	nterspace, Surfa	ice Data, All
Sites: Correlation	to Organic C		
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Total N	Moderate Positive	.396	.023
Psora	Moderate Positive	.373	.032

Table 4-27d: Summary for Non-Habitat Interspace, Surface Data, All
 Sites: Correlation to Litter

Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
Moss	Moderate Positive	.380	.029	
Other rock	Moderate Positive	.379	.030	
pH (1:1)	Moderate Negative	358	.041	
Chert	Moderate Negative	356	.042	
Clay	Moderate Negative	346	.049	

Table 4-27e: Summary for Non-Habitat Interspace, Surface Data, All					
Sites: Correlation	Sites: Correlation to Grass Litter				
Significant	Correlation to Grass	Correlation	n voluo		
Variable	Litter	coefficient	p-value		
Fe	Strong Negative	658	.000		
Ca	Strong Negative	634	.000		
Ni	Strong Negative	562	.001		
YrInsolation	Strong Positive	.538	.001		
Total C	Strong Negative	535	.001		
Inorganic C	Strong Negative	527	.002		
CaCO3	Strong Negative	527	.002		
Elevation	Strong Positive	.499	.003		
Other rock	Strong Positive	.490	.004		
Mg	Strong Negative	489	.004		
Placidium	Strong Positive	.479	.005		
Bkm clast	Strong Negative	476	.005		
Moisture	Strong Negative	451	.009		
Cu	Moderate Negative	448	.009		
As	Moderate Negative	447	.009		
Aspect	Moderate Positive	.405	.019		
NO ₃	Moderate Negative	399	.021		
Moss	Moderate Positive	.363	.038		

Table 4-28: Spearman's Rho Non-Habitat Interspace, Surface Data,Bitter Spring

Table 4-28a: Summary for Non-Habitat Interspace, Surface Data, Bitter Spring: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.982	.000
Moisture	Strong Positive	.645	.032
pH (CaCl ₂)	Strong Negative	645	.032

Table 4-28b: Summary for Non-Habitat Interspace, Surface, Bitter

 Spring: Correlation to Fe

spring. contention to re				
Significant Variable	Correlation to Fe	Correlation coefficient	p-value	
Ca	Very Strong Positive	.991	.000	
Ni	Strong Positive	.800	.004	
Gypsum	Strong Positive	.797	.003	
As	Strong Positive	.791	.004	
Total N	Strong Negative	773	.005	
Slope	Strong Positive	.755	.007	
Р	Strong Negative	682	.021	
EC	Strong Positive	.665	.026	
SO ₄	Strong Positive	.645	.032	
Mg	Strong Positive	.618	.043	

Table 4-28c: Summary for Non-Habitat Interspace, Surface Data, Bitter

 Spring: Correlation to Organic C

Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Bare	Strong Positive	.664	.026
CyanoBare	Strong Positive	.664	.026
TotBSC	Strong Negative	661	.027
Siltstone	Strong Positive	.607	.048

Variable	Strong Negative	coefficient	045	
Significant	Correlation to Litter	Correlation	p-value	
Spring: Correlation to Litter				
Table 4-28d: Summary for Non-Habitat Interspace, Surface Data, Bitter				

Table 4-28e: Summary for Non-Habitat Interspace, Surface Data, Bitter					
Spring: Correlation	Spring: Correlation to Grass Litter				
Significant Variable	Correlation to Grass Litter	Correlation coefficient	p-value		
Easting	Strong Negative	752	.008		
Elevation	Strong Positive	.750	.008		
Total N	Strong Positive	.726	.011		
YrInsolation	Strong Positive	.698	.017		
Мо	Strong Negative	675	.023		
Na	Strong Negative	631	.037		

Table 4-29: Spearman's Rho Non-Habitat Interspace, Surface Data,			
Coyote Springs			
Table 1 20a: Sun	mary for Non Ushitat	Intoranaca Surfa	an Data
Coyote Springs: (Correlation to $CaCO_3$	interspace, Surra	ice Data,
Significant	Completion to CoCO	Correlation	
Variable	Correlation to CaCO ₃	coefficient	P-value
Total C	Very Strong Positive	.951	.000
Clay	Strong Negative	804	.002
Collema	Strong Positive	.725	.008
Litter	Strong Positive	.699	.011
TotLichen	Strong Positive	.696	.012
Moss-Lichen	Strong Positive	.696	.012
TotBSC	Strong Positive	.696	.012
SurfHorzThk cm	Strong Positive	.673	.033
AllRock	Strong Negative	664	.018
TotRock	Strong Negative	664	.018
Easting	Strong Positive	.655	.021
LS clast	Strong Negative	623	.030
CarbRock	Strong Negative	618	.032
Total N	Strong Positive	.615	.033
Bare	Strong Positive	.606	.037
CyanoBare	Strong Positive	.606	.037
pH (1:1)	Strong Negative	594	.042
Table 4-29b: Sun	nmary for Non-Habitat	Interspace, Surfa	ace Data.
Coyote Springs: C	Correlation to Fe	F, ~	,
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ca	Strong Positive	.895	.000
Ni	Strong Positive	.860	.000
As	Strong Positive	.846	.001
Mg	Strong Positive	.818	.001
SO₄	Strong Positive	.725	.008
nH (CaCl ₂)	Strong Positive	.713	.009
Κ	Strong Positive	.699	.011
Bare	Strong Negative	658	.020
CyanoBare	Strong Negative	658	.020
B	Strong Positive	.643	.024
Moisture	Strong Positive	.615	.033
Cl	Strong Positive	.580	.048

Table 4-29c: Summary for Non-Habitat Interspace, Surface Data,Covote Springs: Correlation to Organic C

sofote springs. Conclation to organic C				
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value	
YrInsolation	Strong Negative	615	.033	
Total N	Strong Positive	.608	.036	
Na	Strong Positive	.601	.039	

Table 4-29d: Summary for Non-Habitat Interspace, Surface Data,				
Coyote Springs: (Correlation to Litter			
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
Qtzite	Strong Positive	.882	.000	
Northing	Strong Positive	.738	.006	
Total C	Strong Positive	.714	.009	
Inorganic C	Strong Positive	.699	.011	
CaCO ₃	Strong Positive	.699	.011	
ChertQrzt	Strong Positive	.682	.015	
			D	

Table 4-29e: Summary for Non-Habitat Interspace, Surface Data,				
Coyote Springs: Correlation to Grass Litter				
Significant	Correlation to Grass	Correlation	n voluo	
Variable	Litter	coefficient	p-value	
Bkm clast	Strong Negative	695	.012	

Table 4-30: Spearman's Rho Non-Habitat Interspace, Surface Data,

 Gold Butte

Table 4-30a: Summary for Non-Habitat Interspace, Surface Data, Gold Butte: Correlation to CaCO₃

Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.939	.000
As	Strong Positive	.891	.001
Ca	Strong Positive	.855	.002
Ni	Strong Positive	.770	.009
CyanoBare	Strong Positive	.733	.016
Мо	Strong Negative	671	.034
Grass Litter	Strong Negative	663	.037
Aspect	Strong Negative	648	.043

Table 4-30b: Summary for Non-Habitat Interspace, Surface, GoldButte: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
В	Very Strong Positive	.939	.000
AllRock	Strong Negative	794	.006
TotRock	Strong Negative	790	.007
LS clast	Strong Negative	729	.017
CarbRock	Strong Negative	729	.017
Psora	Strong Positive	.696	.025

Table 4-30c: Summary for Non-Habitat Interspace, Surface Data, GoldButte: Correlation to Organic C

	C		
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Other Ign	Strong Negative	799	.006
Slope	Strong Positive	.758	.011
Collema	Strong Positive	.718	.019
pH (1:1)	Strong Negative	709	.022
pH (sat. paste)	Strong Negative	697	.025
Psora	Strong Positive	.696	.025
EC	Strong Positive	.669	.035
Total N	Strong Positive	.648	.043

Table 4-30d: Summary for Non-Habitat Interspace, Surface Data, GoldButte: Correlation to Litter

Significant Variable	Correlation to Litter	Correlation coefficient	p-value
Moss	Strong Positive	.778	.008
SurfHorzThk cm	Strong Positive	.754	.012
Со	Strong Negative	745	.013
Other rock	Strong Positive	.690	.027

Table 4-30e: Summary for Non-Habitat Interspace, Surface Data, Gold				
Butte: Correlation	to Grass Litter			
Significant	Correlation to Grass	Correlation	n valuo	
Variable	Litter	coefficient	p-value	
Moisture	Very Strong Negative	973	.000	
Ni	Very Strong Negative	906	.000	
As	Very Strong Negative	900	.000	
SO ₄	Strong Negative	888	.001	
Ca	Strong Negative	827	.003	
Total C	Strong Negative	802	.005	
Р	Strong Positive	.748	.013	
Psora	Strong Negative	698	.025	
Inorganic C	Strong Negative	663	.037	
CaCO ₃	Strong Negative	663	.037	
Sand	Strong Positive	.632	.050	

Table 4-31: Spearman's Rho BW canopy BW plots, Surface Data, All					
Sites					
Table 4-31a: Sun	Table 4-31a: Summary for BW canopy BW plots, Surface Data, All				
Sites: Correlation	to CaCO ₃				
Significant	Correlation to CaCO	Correlation	P-value		
Variable		coefficient	1-value		
Total C	Very Strong Positive	.924	.000		
В	Strong Negative	754	.000		
Mg	Strong Positive	.710	.000		
EC	Strong Negative	696	.000		
TotRock	Strong Positive	.666	.000		
Northing	Strong Positive	.659	.000		
Easting	Strong Negative	655	.000		
Bkm clast	Strong Positive	.636	.000		
pH (1:1)	Strong Positive	.624	.000		
Clay	Strong Positive	.622	.000		
Р	Strong Negative	616	.000		
SO ₄	Strong Negative	609	.000		
Moisture	Strong Negative	590	.000		
Litter	Strong Negative	587	.001		
Cyanobacteria	Strong Negative	578	.001		
As	Strong Negative	573	.001		
CarbRock	Strong Positive	.571	.001		
Slope	Strong Negative	531	.002		
Total N	Strong Negative	521	.003		
K	Strong Negative	521	.003		
Ca	Strong Positive	.519	.003		
Elevation	Strong Negative	519	.003		
AllRock	Strong Positive	.517	.003		
Gypsum	Strong Negative	497	.004		
Fe	Strong Positive	.457	.010		
TotBSC	Moderate Negative	443	.013		
SS clast	Moderate Positive	.412	.021		
BlueLichen	Moderate Positive	.408	.023		
Mn	Moderate Negative	396	.028		
Moss	Moderate Negative	395	.028		
Yellow Lichen	Moderate Negative	378	.036		
SurfHorzThk cm	Moderate Negative	372	.039		
Table 4-31b: Sun	nmary for BWcanopy B	W plots, Surface	e Data, All		
Sites: Correlation	to Fe	1,	,		
Significant	a	Correlation			
Variable	Correlation to Fe	coefficient	p-value		
Ni	Strong Positive	.885	.000		
Ca	Strong Positive	.766	.000		
Total N	Strong Negative	591	.000		
Clay	Strong Positive	.484	.006		
Total C	Strong Positive	.465	.008		
Inorganic C	Strong Positive	.457	.010		

Table 4-31b (continued)			
CaCO2	Strong Positive	.457	.010
	Moderate Negative	280	.010
EC Eastina	Moderate Negative	380	.033
Easting	Moderate Negative	370	.041
P \/	Moderate Negative	363	.045
Mg	Moderate Positive	.355	.050
Table 4-31c: Sun	nmary for BWcanopy B	W plots Surface	Data All
Sites: Correlation	to Organic C	, pious, builded	Dutu, Mi
Siles. Correlation		Completion	
Significant	Correlation to Organic C	Correlation	p-value
Variable	ő	coefficient	•
Bare	Strong Negative	463	.009
В	Moderate Positive	.417	.020
Table 4-31d: Sun Sites: Correlation	nmary for BWcanopy B to Litter	W plots, Surface	e Data, All
Variabla	Correlation to Litter	coefficient	p-value
FC	Strong Positive	801	000
EC Cvanobacteria	Strong Positive	785	000
TotRock	Strong Negative	732	.000
Easting	Strong Positive	.730	.000
Mg	Strong Negative	718	.000
Rkm clast	Strong Negative	702	.000
CarbRock	Strong Negative	697	.000
Elevation	Strong Positive	.685	.000
AllRock	Strong Negative	633	.000
SQ4	Strong Positive	.624	.000
Total C	Strong Negative	616	.000
Moss	Strong Positive	.603	.000
Inorganic C	Strong Negative	587	.001
CaCO ₂	Strong Negative	587	.001
B	Strong Positive	.586	.001
pH (sat. paste)	Strong Negative	576	.001
pH (1:1)	Strong Negative	565	.001
Gypsum	Strong Positive	.551	.001
BlueLichen	Strong Negative	536	.002
TotBSC	Strong Positive	.530	.002
Northing	Strong Negative	514	.003
Р	Strong Positive	.505	.004
Cl	Strong Positive	.494	.005
Total N	Strong Positive	.491	.005
Psora	Strong Positive	.457	.010
Placidium	Moderate Positive	.446	.012
Slope	Moderate Positive	.442	.013
Mn	Moderate Positive	.423	.018
Silt	Moderate Positive	.422	.018
As	Moderate Positive	.413	.021
Co	Moderate Positive	.410	.022
Moisture	Moderate Positive	.397	.027
YrInsolation	Moderate Positive	.378	.036

Table 4-31e: Summary for BW canopy BW plots, Surface Data, All			
Sites: Correlation	to Grass Litter		
Significant	Correlation to Grass	Correlation	n voluo
Variable	Litter	coefficient	p-value
As	Strong Positive	.577	.001
Northing	Strong Negative	561	.001
LS clast	Strong Positive	.457	.010
Collema	Strong Negative	452	.011
TotLichen	Moderate Negative	449	.011
Moss-Lichen	Moderate Negative	449	.011
Clay	Moderate Negative	396	.027
В	Moderate Positive	.380	.035
Bkm clast	Moderate Negative	365	.043
Siltstone	Moderate Positive	.359	.048

Table 4-32: Spearman's Rho BW canopy BW plots, Surface Data, Bitter					
Spring					
Table 4-32a: Sun	nmary for BWcanopy B	W plots, Surface	e Data, Bitter		
Spring: Correlation	on to CaCO ₃				
Significant	Correlation to CaCO.	Correlation	D voluo		
Variable		coefficient	r-value		
EC	Strong Negative	718	.013		
Total C	Strong Positive	.618	.043		
P	Strong Negative	618	.043		
Table 4-32b Sun	nmary for BWcanony B	W plots Surface	e Data Bitter		
Spring: Correlation	n to Fe	m pious, Surrace	Dutu, Dittoi		
Spring. Correlatio		Correcto them			
Significant	Correlation to Fe	Correlation	p-value		
Variable N:	Cture a Desition	coefficient	- 001		
	Strong Positive	.833	.001		
AS	Strong Positive	./45	.008		
Cyano Ca	Strong Positive	./10	.015		
04	Strong Positive	.082	.021		
Table 4-32c: Sum	mary for BWcanopy B	W plots, Surface	Data, Bitter		
Spring: Correlation	on to Organic C	1			
Significant		Correlation			
Variable	Correlation to Organic C	coefficient	p-value		
Easting	Strong Positive	.764	.006		
Total N	Strong Positive	.736	.010		
Cu	Strong Positive	.718	.013		
Elevation	Strong Negative	636	.035		
Table 4-32d: Sun	nmary for BWcanopy B	W plots, Surface	e Data, Bitter		
Spring: Correlation	on to Litter				
Significant	Convolution to Fo	Correlation	n voluo		
Variable	Correlation to re	coefficient	p-value		
EC	Strong Positive	.618	.043		
Table 1 22a: Sum	more for DW conony D	W plota Surface	Data Dittor		
Table 4-52e. Suit	ппату тог Б w сапору Б	w plots, Surface	Dala, Dillei		
Spring: Correlation to Grass Litter					
Significant	Correlation to Grass	Correlation	p-value		
Variable	Litter	coefficient	p (ulue		
TotLichen	Strong Negative	886	.000		
Moss-Lichen	Strong Negative	886	.000		
TotBSC	Strong Negative	856	.001		
AllRock	Strong Positive	.840	.001		
TotKock	Strong Positive	.775	.005		
Silt	Strong Negative	692	.018		
pH (1:1)	Strong Positive	.664	.026		
рн (sat. paste)	Strong Positive	.608	.047		

Table 4-33: Spearman's Rho BW canopy BW plots, Surface Data,Coyote Springs

Table 4-33a: Summary for BW canopy BW plots, Surface Data, CoyoteSprings: Correlation to CaCO3Correlation
coefficientSignificant
VariableCorrelation to CaCO3Correlation
coefficientTotal CStrong Positive.664.026

Table 4-33b: Summary for BWBWplots, Surface Data, CoyoteSprings: Correlation to Fe

Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.991	.000
Ca	Strong Positive	.727	.011
Silt	Strong Positive	.718	.013
Sand	Strong Negative	718	.013

Table 4-33c: Summary for BWcanopy BW plots, Surface Data, Coyote				
Springs: Correlation to Organic C				
Significant	Correlation to Organia C Correlation n volue			
Variable Correlation to Organic C coefficient p-value				
NONE				

Table 4-33d: Summary for BW canopy BW plots, Surface Data, Coyote				
Springs: Correlation to Litter				
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
NONE				

Table 4-33e: Summary for BW canopy BW plots, Surface Data, Coyote				
Springs: Correlation to Grass Litter				
Significant	Correlation to Grass	Correlation	n voluo	
Variable	Litter	coefficient	p-value	
Placidium	Very Strong Positive	1.000		

Butte				
Table 4-34a : Summary for BWcanopy BW plots, Surface Data, Gold Butte: Correlation to CaCO ₃				
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value	
Total C	Very Strong Positive	.983	.000	
Zn	Strong Negative	867	.002	
Ca	Strong Positive	.833	.005	
Silt	Strong Positive	.800	.010	
Sand	Strong Negative	800	.010	
LS clast	Strong Positive	.798	.010	
TotRock	Strong Positive	.798	.010	
CarbRock	Strong Positive	.798	.010	
Mn	Strong Negative	733	.025	
Mg	Strong Positive	.733	.025	
Clay	Strong Positive	.733	.025	
Easting	Strong Positive	.683	.042	

 Table 4-34:
 Spearman's Rho BWcanopy BW plots, Surface Data, Gold

Table 4-34b: Summary for BW canopy BW plots, Surface Data, Gold

 Butte: Correlation to Fe

Butte. Conclution to re			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.967	.000
Ca	Strong Positive	.833	.005
LS clast	Strong Positive	.771	.015
TotRock	Strong Positive	.771	.015
CarbRock	Strong Positive	.771	.015
Mg	Strong Positive	.683	.042

Table 4-34c: Summary for BWcanopy BW plots, Surface Data, GoldButte: Correlation to Organic C

Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Bare	Strong Negative	767	.016
Moisture	Strong Negative	767	.016
TotLichen	Strong Positive	.750	.020

Table 4-34d: Summary for BW canopy BW plots, Surface Data, Gold				
Butte: Correlatio	n to Litter			
Significant VariableCorrelation to LitterCorrelation coefficientp-value				
SO ₄	Strong Negative	767	.016	
YrInsolation	Strong Positive	.767	.016	
Bare	Strong Positive	.750	.020	
Placidium	Strong Negative	728	.026	

Table 4-34e: Summary for BW canopy BW plots, Surface Data, Gold				
Butte: Correlation to Grass Litter				
Significant	Correlation to Grass	Correlation	n-value	
Variable Litter coefficient ^p value				
SO ₄	Strong Positive	.707	.033	

Surface Data, All Sites			
Table 4-35a: Sur	nmary for Other Plants-	Under Canopy in	BW plots,
Surface Data, All	Sites: Correlation to Ca	CO ₃	
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.960	.000
Mg	Strong Positive	.872	.000
TotRock	Strong Positive	.756	.000
SO ₄	Strong Negative	749	.000
EC	Strong Negative	734	.000
AllRock	Strong Positive	.724	.000
Bkm clast	Strong Positive	.718	.000
В	Strong Negative	656	.000
Easting	Strong Negative	650	.000
Northing	Strong Positive	.646	.000
Slope	Strong Negative	644	.000
Cyanobacteria	Strong Negative	642	.000
CarbRock	Strong Positive	.632	.000
Elevation	Strong Negative	624	.000
Placidium	Strong Negative	607	.000
Clay	Strong Positive	.598	.000
Moisture	Strong Negative	587	.001
As	Strong Negative	586	.001
pH (1:1)	Strong Positive	.581	.001
Litter	Strong Negative	563	.001
Total N	Strong Negative	557	.001
Silt	Strong Negative	548	.002
BlueLichen	Strong Positive	.547	.002
Gypsum	Strong Negative	495	.005
TotBSC	Strong Negative	485	.007
K	Strong Negative	483	.007
Psora	Moderate Negative	440	.015
Organic C	Moderate Negative	434	.016
Grass Litter	Moderate Negative	429	.018
Р	Moderate Negative	417	.022
NO ₃	Moderate Negative	410	.024
pH (sat. paste)	Moderate Positive	.401	.028
Moss	Moderate Negative	382	.037
Yellow Lichen	Moderate Negative	377	.040
Cl	Moderate Negative	372	.043

 Table 4-35: Spearman's Rho Other Plants-Under Canopy in BW plots,

(Table 4-35 continues on the next page)

Significant Variable	Correlation to Fe	Correlation coefficient	p-value	
Ni	Very Strong Positive	.931	.000	
Ca	Strong Positive	.889	.000	
Р	Strong Negative	568	.001	
Fotal N	Strong Negative	493	.006	
Organic C	Moderate Negative	438	.015	
Clay	Moderate Positive	.437	.016	
Table 4-35c: Summary for Other Plants-Under Canopy in BW plots.				
Surface Data All	Sites: Correlation to Or	coanic C	r,	

Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Total N	Strong Positive	.743	.000
EC	Strong Positive	.602	.000
pH (sat. paste)	Strong Negative	574	.001
Silt	Strong Positive	.542	.002
Р	Strong Positive	.531	.003
Cl	Strong Positive	.507	.004
Cyanobacteria	Strong Positive	.486	.006
Moss	Strong Positive	.456	.011
Mn	Strong Positive	.456	.011
Fe	Moderate Negative	438	.015
Inorganic C	Moderate Negative	434	.016
	Moderate Negative	434	.016
AllRock	Moderate Negative	427	.019
Sand	Moderate Negative	426	.019
Elevation	Moderate Positive	.404	.027
Zn	Moderate Positive	.388	.034
Ca	Moderate Negative	386	.035
Cu	Moderate Positive	.381	.038
Psora	Moderate Positive	.380	.038
TotRock	Moderate Negative	379	.039

Table 4-35d: Summary for Other Plants-Under Canopy in BW plots,				
Surface Data, All	Sites: Correlation to Li	tter		
Significant Variable	Correlation to Litter	Correlation coefficient	p-value	
AllRock	Strong Negative	704	.000	
Easting	Strong Positive	.694	.000	
TotRock	Strong Negative	682	.000	
Bkm clast	Strong Negative	675	.000	
CarbRock	Strong Negative	632	.000	
В	Strong Positive	.629	.000	
Northing	Strong Negative	619	.000	
Mg	Strong Negative	606	.000	
Grass Litter	Strong Positive	.605	.000	

Table 4-35d (continued)			
Clay	Strong Negative	595	.001
BlueLichen	Strong Negative	593	.001
Elevation	Strong Positive	.589	.001
EC	Strong Positive	.567	.001
Inorganic C	Strong Negative	563	.001
CaCO ₃	Strong Negative	563	.001
As	Strong Positive	.536	.002
Total C	Strong Negative	534	.002
SO ₄	Strong Positive	.532	.003
Cyanobacteria	Strong Positive	.463	.010
Со	Moderate Negative	442	.014
pH (1:1)	Moderate Negative	439	.015
Total N	Moderate Positive	.410	.024
Silt	Moderate Positive	.406	.026
Placidium	Moderate Positive	.403	.027
Aspect	Moderate Positive	.393	.032
Moss	Moderate Positive	.391	.033
Slope	Moderate Positive	.391	.033
pH (sat. paste)	Moderate Negative	390	.033
Table 4-35e: Summary for Other Plants-Under Canopy in BW plots.			

Table 4-35e: Summary for Other Plants-Under Canopy in Bw plots,			
Surface Data, All Sites: Correlation to Grass Litter			
Significant	Correlation to Grass	Correlation	n-value
Variable	Litter	coefficient	p-value
Northing	Strong Negative	691	.000
As	Strong Positive	.658	.000
Litter	Strong Positive	.605	.000
Bkm clast	Strong Negative	595	.001
Na	Strong Negative	557	.001
Clay	Strong Negative	542	.002
В	Strong Positive	.504	.004
Mg	Strong Negative	496	.005
K	Strong Positive	.481	.007
Aspect	Moderate Positive	.438	.016
InorganicC	Moderate Negative	429	.018
CaCO ₃	Moderate Negative	429	.018
BlueLichen	Moderate Negative	413	.023
Easting	Moderate Positive	.399	.029
Со	Moderate Negative	396	.030
Slope	Moderate Positive	.385	.035
Elevation	Moderate Positive	.379	.039
Total C	Moderate Negative	374	.042
Ca	Moderate Negative	368	.046
EC	Moderate Positive	.363	.049

Table 4-36: Spearman's Rho Other Plants-Under Canopy in BW plot	ots,
Surface Data, Bitter Spring	

Table 4-36a : Summary for Other Plants-Under Canopy in BW plots,	
Surface Data,, Bitter Spring: Correlation to CaCO ₃	

	1 0	5	
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Strong Positive	.784	.004
Mg	Strong Positive	.647	.031
Mn	Strong Negative	642	.033
TotRock	Strong Positive	.621	.041
Silt	Strong Negative	615	.044

Table 4-36b: Summary for Other Plants-Under Canopy in BW plots,Surface Data, Bitter Spring: Correlation to Fe

Surface Data, Ditter Spring. Conclution to re			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.918	.000
Ca	Strong Positive	.855	.001
Total N	Strong Negative	791	.004
As	Strong Positive	.718	.013
pH (1:1)	Strong Negative	709	.015
Total C	Strong Negative	709	.015
P	Strong Negative	691	.019

Table 4-36c: Summary for Other Plants-Under Canopy in BW plots,Surface Data, Bitter Spring: Correlation to Organic C

Significant Variable	Correlation to Organic C	coefficient	p-value
Cl	Strong Positive	.645	.032

 Table 4-36d: Summary for Other Plants-Under Canopy in BW plots,

 Surface Data, Bitter Spring: Correlation to Litter

 Significant

Significant Variable	Correlation to Litter	coefficient	p-value
Easting	Strong Positive	.790	.015
Мо	Strong Negative	609	.047

Table 4-36e: Summary for Other Plants-Under Canopy in BW plots,			
Surface Data, Bitter Spring: Correlation to Grass Litter			
Significant Variable	Correlation to Grass Litter	Correlation coefficient	p-value
SO ₄	Very Strong Negative	961	.000
Moisture	Strong Negative	746	.008
Gypsum	Strong Negative	711	.014
As	Strong Negative	695	.018
TotBSC	Strong Negative	682	.021

Table 4-37: Spearman's Rho Other Plants-Under Canopy in BW plots,			
Surface Data, Coyote Springs			
Table 4-37a: Summary for Other Plants-Under Canopy in BW plots			
Surface Data, Coy	vote Springs: Correlation	n to $CaCO_3$	i z proto,
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Total C	Very Strong Positive	.939	.000
As	Strong Negative	830	.003
Clay	Strong Positive	.661	.038
Silt	Strong Negative	661	.038
Organic C	Strong Negative	648	.043
Table 4-37b: Sun	nmary for Other Plants-	Under Canopy in	n BW plots,
Surface Data, Coy	vote Springs: Correlation	n to Fe	
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.976	.000
Ca	Very Strong Positive	.939	.000
Р	Very Strong Negative	903	.000
Mn	Very Strong Negative	903	.000
pH (sat. paste)	Strong Positive	.891	.001
Со	Strong Negative	830	.003
Clay	Strong Positive	.770	.009
NO ₃	Strong Positive	.657	.039
Mg	Strong Positive	.636	.048
Table 4-37c: Sum	mary for Other Plants-U	Under Canopy in	BW plots.
Surface Data, Coy	vote Springs: Correlation	n to Organic C	1 /
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
Total N	Strong Positive	.794	.006
Silt	Strong Positive	.745	.013
Inorganic C	Strong Negative	648	.043
CaCO ₃	Strong Negative	648	.043
Clay	Strong Negative	648	.043
Table 4-37d: Summary for Other Plants-Under Canopy in BW plots,			
Surface Data, Coyote Springs: Correlation to Litter			
Significant Variable	Correlation to Litter	Correlation coefficient	p-value
NONE			
Surface Data, Covote Springs: Correlation to Grass Litter			
Significant	Correlation to Grass	Correlation	
Variable	Litter	coefficient	p-value
NONE			

Table 4-38: Spearman's Rho Other Plants-Under Canopy in BW plots,Surface Data, Gold Butte

Table 4-38a: Summary for Other Plants-Under Canopy in BW plots, Surface Data, Gold Butte: Correlation to CaCO₃

-			
Significant Variable	Correlation to CaCO ₃	Correlation coefficient	P-value
Clay	Strong Positive	.800	.010
Easting	Strong Positive	.733	.025
TotLichen	Strong Negative	700	.036
Slope	Strong Negative	683	.042

Table 4-38b: Summary for Other Plants-Under Canopy in BW plots,Surface Data, Gold Butte: Correlation to Fe

······································			
Significant Variable	Correlation to Fe	Correlation coefficient	p-value
Ni	Very Strong Positive	.983	.000
Ca	Very Strong Positive	.950	.000
Silt	Strong Positive	.883	.002
Sand	Strong Negative	883	.002
Mg	Strong Positive	.850	.004
Na	Strong Positive	.717	.030
Organic C	Strong Negative	700	.360

Table 4-38c: Summary for Other Plants-Under Canopy in BW plots,			
Surface Data, Gold Butte: Correlation to Organic C			
Significant Variable	Correlation to Organic C	Correlation coefficient	p-value
EC	Strong Positive	.700	.036
Fe	Strong Negative	700	.036

Table 4-38d: Summary for Other Plants-Under Canopy in BW plots,			
Surface Data, Gold Butte: Correlation to Litter			
Significant Variable	Correlation to Litter	Correlation coefficient	p-value
Slope	Strong Negative	783	.013
Placidium	Strong Negative	762	.017
AllRock	Strong Negative	745	.021
Psora	Strong Negative	733	.025

Table 4-38e: Summary for Other Plants-Under Canopy in BW plots,			
Surface Data, Gold Butte: Correlation to Grass Litter			
Significant	Correlation to Grass	Correlation	n voluo
Variable	Litter	coefficient	p-value
TotBSC	Strong Negative	883	.002
Yellow Lichen	Strong Negative	822	.007
TotLichen	Strong Negative	813	.008
Psora	Strong Negative	804	.009
Moss-Lichen	Strong Negative	769	.015
Cu	Strong Negative	769	.015
Со	Strong Negative	720	.029

IV. Discussion

General Overview

Results of surface chemistry characteristics (interspaces) between buckwheat sites and non-buckwheat sites (potential and non-habitat) are very similar to those found for soils (see Chapter 3). Overall, buckwheat surfaces contained more CaCO₃, available Fe, Ni, and Ca, and less P, Co, Mn, and total N. Exceptions to these trends occurred under plant canopies due to the effects of greater organic C and plant bioaccumulation. Buckwheat areas also exhibited significantly more cyanobacterial crusts, bare surfaces, less grass litter, and lower percent rock cover (when rocks were present) as compared to non-buckwheat sites. Differences between buckwheat canopies and other plant canopies generally were a function of the smaller size and lower amount of input of organics and litter from buckwheat plants.

Coyote Springs Trends

At Coyote Springs, buckwheat site interspaces contained statistically lower percent rock cover, a thinner surface horizon, and less available P & Co than non-buckwheat site interspaces (Tables 4-3a & 4-9a). Buckwheat site interspaces also contained more total C, inorganic C, CaCO₃, available Ca, Mg, Fe, and more bare spaces (Table 4-9a). Buckwheat habitat interspaces were also compared to interspaces on potential habitat (Tables 4-7a & 4-13a). Buckwheat habitat contained significantly greater amounts of clay, total C, inorganic C, and CaCO₃. When comparing potential habitat interspaces to interspaces in non-habitat sites, potential habitat contained lower percent rock cover including limestone, carbonate, quartzite, chert-quartzite, total rock and all rock – but contained a greater percent of petrocalcic rock cover (Tables 4-8a & 4-14a). Potential habitat interspaces also contained less available P, a thinner surface horizon, and more inorganic C, CaCO₃, Mg, blue lichen, and bare spaces with and without cyanobacterial crusts compared to non-habitat.

When comparing buckwheat canopies to other plant canopies within buckwheat sites, the buckwheat canopies contained significantly greater percent total rock cover, more available Fe and Ni, and less plant litter (Tables 4-4a & 4-10a). Compared to interspaces (Tables 4-5a & 4-11a), buckwheat canopies contained statistically greater percent limestone rock cover, more available Fe, Ni, K, and total N, higher EC values, and greater percent plant litter cover. In contrast, other plant canopies at buckwheat sites contained more organic C, available K, P, Co, Mn, and total N than interspaces (Tables 4-6a & 4-12a). Other plant canopies also contained a greater percent plant litter cover, less moisture, less available Fe, less clay and a statistically significant lower pH (1:1) than buckwheat interspaces.

Gold Butte Trends

In the Gold Butte study area, comparisons of buckwheat site interspaces to nonbuckwheat site interspaces identified numerous statistically significant trends. Buckwheat site interspaces contained more clay, total C, inorganic C, CaCO₃, available Ca, Fe, Ni, As, SO₄, greater percent total biological soil crust, and cyanobacterial surface crust cover (Table 4-3b and 4-9b). Buckwheat site interspaces also exhibited statistically lower available K, Co, and Mn, and contained less sand, lower percent of grass litter, *Placidium*, and bare soil cover. Compared to potential habitat interspaces, buckwheat interspaces contained more total C, inorganic C, CaCO₃, Ca, Fe, Ni, As, SO₄, greater percent cyanobacterial crust and total biological soil crust cover (Tables 4-7b & 4-13b). Buckwheat interspaces also contained less available Mn than potential habitat. Interspaces in potential habitat interspaces contained more clay, silt, gypsum clasts, organic C, total C, inorganic C, CaCO₃, available Ca, Fe, Ni, B, As, Cu, SO₄, total N, moisture, higher EC values, were found at higher elevations, and greater percent cyanobacterial crust cover (Tables 4-8b & 4-14b). Potential habitat interspaces also contained less sand, lower percent limestone, carbonate, and total rock cover, lower percent grass litter and other litter cover, had lower pH values, and lower percent bare surface cover than non-habitat.

Buckwheat canopies compared to other plant canopies within buckwheat sites contained greater percent rock cover (all lithologies), more available Co, and had higher pH values (Tables 4-4b & 4-10b). Buckwheat canopies also had lower available Mo, total N, lower percent grass litter, moss and *Psora* cover. In paired comparisons of buckwheat canopies to interspaces within buckwheat sites, the canopies contained more available K, B, Zn, SO₄, Cl, NO₃, moisture, greater percent litter, *Psora*, and bare soil cover, and had higher pH values (Tables 4-5b & 4-11b). Buckwheat canopies also contained lower percent of total biological soil crust, and cyanobacterial crust cover. Compared to interspaces, other plant canopies in buckwheat sites had significantly more available Mg, B, K, P, Cl, NO₃, total N, greater percent grass and other litter, moss, *Psora*, yellow lichen, and bare space cover, and higher EC and pH values (Tables 4-6b and 4-12b). Other plant canopies also had lower percent of total rock, total biological soil crust, and cyanobacterial crust cover, clay, inorganic C, CaCO₃ and the saturated paste pH values were lower.

Bitter Spring Trends

Interspaces in buckwheat sites at Bitter Spring contained greater percent cyanobacterial surface crust cover, more moisture, lower pH values, and less available P compared to interspaces in non-buckwheat sites (Tables 4-3c & 4-9c). Similarly, buckwheat habitat interspaces contained less available P and greater percent bare surface cover with or without cyanobacterial crusts than interspaces in potential habitat (Tables 4-7c & 4-13c). Potential habitat interspaces had higher moisture values and less clay than non-habitat interspaces (Tables 4-8c & 4-14c).

Buckwheat canopies differed from other plant canopies in having greater percent total rock clast cover and less total N and lower percent litter cover (Tables 4-4c & 4-10c). Buckwheat canopies differed from adjacent interspaces in having more total C, organic C, available B, Co, Cu, Mn, Zn, Cl, greater percent litter cover, higher EC values and less moisture (Tables 4-5c & 4-11c). Other plant canopies differed from adjacent interspaces in buckwheat sites in their greater amounts of organic C, available B, P, Mn, Cu, Cl, and percent litter cover, and higher EC

values. Plant canopies also had lower pH values, lower percent rock cover including gypsum, less available Ca, Fe and lower moisture values than interspaces (Tables 4-6c & 4-12c).

Trends among all study areas combined

When all surface data were combined and buckwheat interspaces were compared to interspaces in non-buckwheat sites, the buckwheat interspaces had significantly more total C, inorganic C, CaCO₃, available Ca, Fe, Ni, and As, higher moisture values, and a greater percent cynaobacteria crust +/- bare surface cover (Tables 4-3d & 4-9d). These buckwheat interspaces also contained less available P, Co, Mn, and lower percent grass litter cover, had thinner surface horizons, and had a lower 1:1 pH. Similarly, interspaces in habitats, versus potential habitats, contained significantly more total C, inorganic C, CaCO₃, available Ca, Fe, and Ni, and less organic C, available P, Co, Mn, total N, lower percent moss-lichen and total lichen crust cover (Tables 4-7d & 4-13d). In contrast, potential habitat interspaces differed from non-habitat interspaces by having significantly more organic C, available Fe, moisture, higher EC values, greater percent cyanobacteria, *Psora*, Collema, Moss-lichen, total lichen and total biological soil crust cover, but lower percent rock and grass litter cover and lower pH values (Tables 4-8d and 4-14d).

Buckwheat canopies had a greater percent carbonate, total rock, and *Psora* cover than other plant canopies, but a lower percent limestone cover (Tables 4-4d & 4-10d). Buckwheat canopies also had less available P, total N, lower percent grass and other litter cover compared to other plant canopies in buckwheat sites. Buckwheat canopies had higher EC values, more organic C, available K, B, Co, Mn, Zn, SO₄, Cl, total N, greater percent litter, cyanobacterial crust, and *Psora* cover compared to interspaces (Tables 4-5d & 4-11d). Buckwheat canopies also had less clay, lower percent total biological crust, and bare space with and without cyanobacterial crust cover as compared to interspaces. Other plant canopies in buckwheat sites had many more significant differences when compared to interspaces: greater percent gypsum clast, litter, and total biological soil crust cover, increased organic C, available K, B, P, Mn, Cu, Zn, SO₄, Cl, total N, higher EC and pH (using the CaCl₂ method) (Tables 4-6d & 4-12d). Other plant canopies also had less clay, lower percent rock cover (except gypsum), lower percent bare space with cyanobacterial crust cover, and lower percent cyanobacterial crust, yellow lichen, moss, and *Psora* cover, and lower pH values (when using the saturated paste method).

Interpretations

Surface characteristics can affect the distribution of the Las Vegas buckwheat through many mechanisms (e.g. water distribution, germination, insolation, soil chemistry, seed distribution, etc.). In this study, we collected baseline data on differences in surficial characteristics (e.g. soil chemistry, biological soil crusts, rock cover) among buckwheat habitat, potential habitat, and non-habitat. Our study was designed to help direct future studies towards a better understanding of the mechanisms controlling the distribution of the Las Vegas buckwheat.

Final Report (CH4)

A wide range of geomorphic processes act upon Mojave Desert surfaces, and with varying magnitude. Some very old, stable landscapes may experience little to no active alluvial deposition (e.g. Brock & Buck, 2009). In contrast, young surfaces in active arroyos may experience seasonal deposition and/or erosion. The relative age of a surface and the degree of geomorphic activity occurring upon it can greatly impact plant community composition and structure (e.g. Smith et al., 1995; Hamerlynck et al., 2002). The effect of wind on geomorphic surfaces is especially important in these environments. Eolian erosion potential is much higher on bare surfaces than on surfaces mantled by rocks, biological soil crusts or vascular plants. Similarly, these features also affect eolian deposition. Surfaces on which eolian sand has been or currently is being deposited will exhibit drastically different soil texture, chemistry, water holding capacity, and infiltration. For example, increased deposition of fine-grained sand constitutes a very important component for the development of biological soil crusts (Williams, 2011). Deposition of fine dust provides an important source of nutrients, and drives the formation of desert pavements and associated Av horizons (McFadden et al., 1998; Anderson et al., 2002). In turn, progressive development of vesicular horizons (Av) causes significantly reduced infiltration/increased runoff and consequently produces an enormous impact on vascular plant distribution (Turk & Graham, 2011). Therefore, eolian and other geomorphic processes significantly influence the distribution and type of vascular plants on desert substrates. More research is needed, but in this study, we found that in field areas where rock clasts were generally common (Coyote Springs), Las Vegas buckwheat favored the few available sites with lower percentage of clast cover. In our other study areas, surfaces composed of fine-grained sediment were more common in the general area such that both buckwheat sites and non-sites had fewer rock clasts and no statistically significant relationship was found. Therefore, as a general rule, our observations suggest that buckwheat habitats are far more likely to occur on surfaces with few to no rock clasts.

The strong control by geomorphic processes of surface characteristics is especially important in interspaces. Distinctions between buckwheat site interspace properties and nonbuckwheat site interspaces largely paralleled the differences found in soil profile characteristics (see Chapter 3). Buckwheat interspaces contain more CaCO3, available Ca, Fe, Ni, and As, and less available P, Co and Mn (Table 4-9d). Individual sites varied somewhat from these overall trends. In addition to the trends already mentioned, buckwheat interspaces at Gold Butte also had less available K and more SO₄ (Table 4-9b). These results indicate that soil chemistry, which in these areas is largely controlled by geologic processes, is the most important determinant of nutrient availability in interspaces.

A second very important characteristic found in arid regions, including the Mojave Desert, is the establishment of fertile islands (Charley & West, 1977; Schlesinger et al., 1990; Schlesinger et al., 1996; Kieft et al., 1998; Schlesinger & Pilmanis, 1998; Aguiar & Sala, 1999; Bolling & Walker 2002; Titus et al., 2002; Ewing et al., 2007; Li, 2007). The fertile island effect describes the uneven distribution of biological resources across desert landscapes, particularly the concentration of resources beneath plant canopies over time. In this study, when all data are

Final Report (CH4)

combined, buckwheat canopies exhibit less P, total N, and lower percent litter (grass and other) cover compared to other plant species growing in buckwheat sites (Table 4-10d). These general soil chemistry trends, and the increase in Fe and Ni in buckwheat canopies in Coyote Springs (Table 4-10a) mirror subsurface results (see Chapter 3). Surprisingly, buckwheat canopies did have a greater percent rock cover (except limestone) and *Psora* cover than other plant canopies in buckwheat habitats.

Specific variations in soil nutrient contents beneath shrubs most often result from two major processes: (1) the effects of bioaccumulation, and (2) the increased cation exchange capacity provided by increased amounts of organic C (i.e. humus). In the first process, plant uptake of nutrients and the accumulation and decomposition of plant tissues under the canopy can increase nutrient contents according to the chemical signature of the plant tissues (e.g. Jobbagy & Jackson, 2001, 2004). In the second process, plant nutrients are more strongly retained at the surface because they are held tightly to exchange sites on organic matter, which increases in content under canopies (Brady & Weil, 2008). We have no data with which to test the first process (bioaccumulation), and this represents a subject in major need of future research. However, the second process was evaluated using Spearman correlation tests (Tables 4-15 to 4-38). Buckwheat canopies at Gold Butte exhibited more available Co and less Mo than other plant canopies (Table 4-10b). However, we found no significant correlations between organic carbon and Co or Mo in Gold Butte buckwheat canopies (Table 4-34c). There was a strong positive correlation between organic C and available Cu in buckwheat canopies at Bitter Spring (Table 4-32c), and there was a moderate positive correlation between organic C and available boron when all the sites were combined (Table 4-31c).

Correlations between organic C and other soil nutrients for plant canopies of species other than buckwheat are markedly distinct. For these other canopies, we found strong positive correlations between organic C and total N, available P, Cl, and Mn, and moderate positive correlations with Zn, and Cu (Table 4-35c). Such relationships suggest that organic C may play a more important role in nutrient cycling and availability for other plants in buckwheat habitats than for buckwheat. Organic C may be a more important component for non-buckwheat canopies in part because of their generally larger observed canopy diameters, and therefore greater organic matter inputs to the soil. Although organic carbon did not differ significantly between other plant canopies and buckwheat canopies, percent litter and grass litter cover were significantly more abundant in other canopies than under buckwheat. Again, this trend may reflect the generally smaller and less-densely vegetated canopy, and reduced shade provision, of *E. corymbosum* var. *nilesii* at our study sites. More data is needed to adequately interpret these results. In particular, analysis of plant tissue chemistry, and additional field data regarding canopy size, plant species, shrub ages, and the effects of biological soil crusts (among other parameters) could all greatly further our understanding of nutrient cycling within buckwheat habitat.

Buckwheat canopies did differ significantly from interspaces in buckwheat sites. Buckwheat canopies exhibited increased organic C, total C, available B, Co, Cu, Mn, Zn, Cl, and EC values (Table 4-11c). These results indicate that many of the potentially limiting nutrients in

Final Report (CH4)

the subsoil (e.g. Co, Mn, Zn, Cu – see chapter 3) are more available under buckwheat canopies. Although the Spearman's correlation tests did not indicate any significant co-variance between these nutrients and organic C, we maintain that these increases reflect both bioaccumulation as well as retention on soil humus exchange sites. Other processes that likely have contributed to these results include increased dust capture under canopies. If dust is enriched in any of the above elements, this process could explain these increases. In addition, interception of rainwater by plant canopies often decreases leaching of the soil directly underneath the canopy. This process, perhaps combined with greater evapotranspiration, likely plays an important role in the increased soluble salts found underneath all plant canopies (as measured by Cl, SO₄, EC) (Tables 4-11d and 4-12d).

The results of this study touched upon an additional interaction that may have important controls on buckwheat distribution - namely, relationships between biological soil crusts and vascular plants. We identified a significant positive relationship between buckwheat habitat and cyanobacteria. This relationship may be the result of both cyanobacteria and buckwheat favoring surfaces with low percent rock cover (Williams, 2011). However, cyanobacteria fix N (Harper & Belnap, 2001), and they stabilize geomorphically active surfaces (Belnap, 2001; Williams, 2011). These, and possibly other cyanobacteria-driven mechanisms, may also impact buckwheat germination and establishment. Explaining the potential effects of cyanobacteria (or other BSCs) on buckwheat (or vice versa) is beyond the capabilities of this dataset. However, previous studies on BSC influences on vascular plants have produced contradictory results. These studies include many different biological soil crusts and are not centered around cyanobacteria crusts alone. Some studies suggest that BSCs benefit vascular plants through effects that include: reduced soil erosion (Belnap and Gillette, 1997), N fixation (Harper & Belnap, 2001), increased site fertility (DeFalco et al., 2001), seed catching and provision of prime germination and establishment microhabitats (West, 1990; Eckert et al., 1986), and increased infiltration and water retention (Maestre et al., 2002). Other studies suggest that BSCs may inhibit establishment of vascular plants by creating physical barriers (Romao & Escudero, 2005), producing exudates (West, 1990), or competing for resources (Belnap et al., 2001). More recent research suggests that BSC effects on vascular plants are strongly species specific (both crust and plant species) (Maestre, 2003; Escudero et al., 2007) but that the effects are especially strong on emergence and early growth of seedlings, and that variations in seed size, among other traits, are important (Escudero et al., 2007).

This study could not directly assess germination, however, we can make some assumptions regarding soil conditions at the time of germination. If we assume that surface characteristics at buckwheat sites today have changed little since the current buckwheat plants first germinated, then our surface chemistry data can be used to infer possible controls on buckwheat (or other plant) distributions. This assumption is probably valid, because the vast majority of buckwheat surfaces are not geomorphically active, and it is unlikely that significant changes to surface slope, topography, rock clast type and size have occurred within the likely timeframe of the buckwheat currently present (see Chapter 2). Thus, based on this assumption,
Final Report (CH4)

buckwheat seeds reaching interspaces would have encountered a soil environment with more CaCO₃, available Ca, Fe, Ni, As, greater percent cyanobacteria cover, and less available P, Co, Mn, and lower percent grass litter cover. Of these characteristics, the increased arsenic stands out as a possible factor limiting germination and/or initial establishment.

Arsenic is a known phytotoxin (e.g. Sheppard, 1992; Patra et al., 2004). Research (primarily performed on agricultural crops in various climates) has shown reduced seed germination, decreased plant height, reduced root growth, reduced leaf area and an associated reduction in photosynthesis (e.g., see list of references in Nagy et al., 2005). Arsenic is a known toxin for seed germination. A study on 23 cultivars of flax (Linum usitatissiumum L.) found arsenic to have the greatest toxicity on seed germination compared to other toxic metals including Cu, Cd, Co, Cr, Ni, Pb, Cr, and Zn (Soudek et al., 2010). Similarly, arsenic was found to be the most toxic element for mustard seed germination compared to Pb, Cr, Hg and Cd (Fargasova, 1994). Many researchers have noted that arsenic damages root growth, accounting for the inability of plants intolerant of arsenic to become established (e.g. Fargasova, 1994; Elahi et al., 2010; Soudek et al., 2010; Bagur-Gonzalez et al., 2011). In our study, the maximum plantavailable arsenic concentrations in surface samples were found in buckwheat habitat (up to 2.953 ppm). Bagur-Gonzalez et al. (2011) found, based on root length effects, that soluble arsenic was moderately to highly toxic at levels between 0.1 and 1.1 ppm. Although the Bagur-Gonzalez et al. (2011) study was for lettuce (Lactuca sativa), we are aware of no data describing what amounts or forms of arsenic might impact plants native to the Mojave Desert or adjacent areas. Additionally, cyanobacteria are known to accumulate and/or exhibit resistance to arsenic (see Banerjee, 2008; Bhattacharya and Pal, 2011; Yin et al., 2011 and references within). Cyanobacteria can also convert inorganic As into volatile compounds for detoxification (Yin et al. 2011). Although Nagy et al., (2005) found that cyanobacteria in biological soil crusts in Utah could easily tolerate the concentrations of arsenic found in this study, it is important to note that research thus far has focused on cyanobacteria in environments other than the Mojave Desert. Therefore, it is not yet known if the species endemic to our study areas have similar responses. It is a hypothesis worth testing. But, the association of cyanobacteria and buckwheat to surfaces soils containing greater arsenic concentrations may reflect the ability of each to tolerate increased arsenic.

V. Conclusions

Surface data indicate that buckwheat in this study occurs in soils that are low in P, Mn, Co, have lower percentage of grass litter cover, and higher CaCO₃, available Fe, Ni, Ca, As, and sometimes Mg and/or SO₄. Although the percentage of rock cover was not significant in all study areas, buckwheat was not found in desert pavements or surfaces with extensive or thick clast cover (see Chapter 2). It is likely that the lack of statistical significance in some sites has more to do with the availability of coarse clasts (surficial geology) in the selected study areas.

Differences between buckwheat site interspaces and non-buckwheat interspaces largely paralleled differences found in soil profile and horizon characteristics between classes (see

Chapter 3). These results indicate that soil chemistry, which in these areas is largely controlled by geologic processes, is the most important control on nutrient availability in interspaces.

Except for Cu, we found no significant correlations between organic C and plant nutrients in soils under buckwheat canopy. In contrast, other plant canopies in buckwheat habitat exhibited strong positive correlations between organic C and total N, available P, Cl, and Mn, and moderate positive correlations with Zn, and Cu. These relationships suggest that organic C may play a more important role in nutrient cycling and nutrient availability for other plants in buckwheat habitats as compared to buckwheat.

Buckwheat canopies do significantly differ from habitat interspaces. Buckwheat canopies contain more organic C, total C, available B, Co, Cu, Mn, Zn, Cl and exhibit higher EC values. This indicates that many of the potentially limiting nutrients in the subsoil (e.g. Co, Mn, Zn, Cu – see chapter 3) are increased under buckwheat canopies.

There is a significant positive relationship between buckwheat habitat and percent cyanobacterial crust cover. Understanding what effect cyanobacteria might have on buckwheat (or vice versa) is beyond the capabilities of this dataset. However, previous studies on the effects that biological soil crusts have on vascular plants have provided contradictory results, and indicate an important direction for future research. Lastly, germination and/or establishment of plants on buckwheat surfaces may require some level of tolerance to arsenic. Plant-available arsenic at the surface was greatest in buckwheat habitats, and the amounts are great enough to impact agricultural crops. What, if any, effect they could have on native plants is unknown.

VI. Recommendations

- Results of soil surface characterization largely corroborate results described for subsoil samples, and suggest that this study has provided useful soil chemical data of potential benefit to future germination studies on the Las Vegas buckwheat because more is now known regarding the range of soil conditions in which buckwheat occurs. To fully understand buckwheat habitat, research on germination is needed.
- We note that the present data cannot answer key questions relevant to habitat definitions for *E. corymbosum* var. *nilesii*. In particular: Do differences between buckwheat and other plant canopies reflect "time zero" substrate differences (i.e., characteristics at the time of plant germination), or do the present differences instead reflect plant-soil nutrient dynamics between time zero and the present day? We suggest that plant tissue chemistry and litter analysis might help answer this question and recommend such analyses for future research efforts.
- Furthermore, we recognize that, lacking age control on existing buckwheat individuals, our data cannot help determine what timescales (years, decades) might be involved if buckwheat plants do indeed alter the chemistry of their substrates following establishment. However, we also suggest that this issue of potential soil change in

response to plant growth and nutrient cycling may be discounted due to the erosional nature of many of the study sites (Chapter 2). Given the role of badlands erosion, slow rates of pedogenesis, and low total organic matter content, it is likely that bioaccumulation overprints background (interspace) soil conditions only weakly (if at all).

References

- Aguiar M.R. and Sala, O.E., 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution 14: 273-277.
- Anderson, K., Wells, S., and Graham, R., 2002. Pedogenesis of Vesicular Horizons, Cima Volcanic Field, Mojave Desert, California Soil Science Society of America Journal 66: 878–887.
- Bagur-Gonzalez, M.G., Estepa-Molina, C., Martin-Peinado, F., and Morales-Ruano, S., 2011. Toxicity assessment using *Lactuca sativa* L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. Journal of Soils and Sediments 11: 281-289.
- Banerjee, M., 2008. Arsenic: A threatening environmental issue and role of cyanobacteria in toxicity mitigation. Journal of Ecophysiology and Occupational Health 8: 3-4: 153-159.
- Belnap, J., 2001. Comparative structure of physical and biological soil crusts. Pages 177-191 *In*J. Belnap and O. L. Lange, editors. Biological Soil Crusts: Structure, Function, and Management, Springer-Verlag, Berlin.
- Belnap, J. and Gillette, D.A., 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in SE Utah, USA. Land Degradation and Development 8: 355-362.
- Belnap, J., Kaltenecker, J.H., Rosentreter, R., Williams, J., Leonard, S., and Eldridge, D., 2001. Biological soil crusts: Ecology and management. Bureau of Land Management, Technical Reference 1730-2. Denver, CO.
- Bhattacharya, P. and Pal, R., 2011. Response of cyanobacteria to arsenic toxicity. Journal of Applied Phycology 23: 293-299.
- Bolling J. D. and Walker, L.R.. 2002. Fertile island development around perennial shrubs across a Mojave Desert chronosequence. Western North American Naturalist 62: 88-100.
- Brady, N.C. and Weil, R.R., 2008. The Nature and Properties of Soils (14th Edition, revised). Prentice Hall. 980 pages.
- Brock, A.L. and Buck, B.J., 2009. Polygenetic development of the Mormon Mesa, NV petrocalcic horizons: Geomorphic and paleoenvironmental interpretations. Catena 77: 65-75.
- Charley, J.L. and West, N.E., 1977. Micro-patterns of nitrogen mineralization activity in soils fo some shrub-dominated semi-desert ecosystems of Utah. Soil Biology & Biochemistry 9: 357-365.
- DeFalco, L., Detling, J., Tracy, R., and Warren, S., 2001. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert. Plant and Soil 234: 1-14.
- Eckert Jr., R.E., Peterson, E.E., Mecresse, M.S., Stephens, J.L, 1986. Effects of soil surface morphology on emergence and survival of seedlings in big sagebrush communities. Journal of Range Management 39: 414-420.

- Elahi, F.E., Aminuzzaman, F.M., Mridha, M.A.U., Begum, B., and Harun, A.K.M.Y., 2010. AMF inoculation reduced arsenic toxicity and increased growth, nutrient uptake and chlorophyll content of tomato grown in arsenic amended soil. Advances in Environmental Biology, 4(2): 194-200.
- Escudero, A., Martinez, I., de la Cruz, A., Otalora, M.A.G., and Maestre, F.T., 2007. Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. Journal of Arid Environments 70: 18-28.
- Ewing S. A., Southard, R.J., Macalady, J.L., Hartshorn, A.S., and Johnson, M.J., 2007. Soil microbial fingerprints, carbon, and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Science Society of America Journal 71: 469-475.
- Fargasova, A., 1994. Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of *Sinapis alba* seeds. Bulletin Environmental Contamination and Toxicology 52: 452-456.
- Hamerlynck, E.P., McAuliffe, J.R., McDonald, E.V., and Smith, S.D., 2002. Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83(3): 768-779.
- Harper, K.T. and Belnap, J., 2001. The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments 47: 347-357.
- Jobbagy, E.G. and Jackson, R.B., 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53: 51-77.
- Jobbagy, E.G. and Jackson, R.B., 2004. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85(9): 2380-2389.
- Kieft, T.L., White, C.S., Loftin, S.R., Aguilar, R., Craig, J.A., and Skaar, D.A., 1998. Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology 79: 671-683.
- Li,J., Zhao, C., Zhu, H., Li, Y., and Wang, F., 2007. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments 71(4): 350-361.
- Maestre, F.T., Huesca, M., Zaady, E., Bautista, S., and Cortina, J., 2002. Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biology and Biogeochemistry 34: 895-898.
- Maestre, F.T., 2003. Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35: 71-81.
- McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J., and Forman, S.L., 1998. The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change. Geomorphology 24: 101-145.
- Nagy, M.L., Johansen, J.R., St. Clair, L.L., and Webb, B.L., 2005. Recovery patterns of microbiotic soil crusts after arsenic contamination. Journal of Arid Environments 63: 304-323.

- Patra, M., Bhowmik, N., Bandopadhyay, B., and Sharma, A., 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany 52: 199-223.
- Romao, R. and Escudero, A., 2005. Gypsum physical soil crust and the existence of gypsophytes in semi-arid central Spain. Plant Ecology 181: 1-11
- Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L. Huenneke, L.F. Jarrell, W.M., Virginia, R.A., and Whitford, W.G., 1990. Biological feedbacks in global desertification. Science 247: 1043-1048.
- Schlesinger, W.H., Raikes, J.A., Hartley, A.E., and Cross, A.F., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77(2): 364-374.
- Schlesinger, W. H., A. M. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42: 169-187.
- Sheppard, S.C., 1992. Summary of phytotoxic levels of soil arsenic. Water, Air, and Soil Pollution 64: 539-550.
- Smith, S.D., Herr, C.A., Leary, K.L., and Piorkowski, J.M., 1995. Soil-plant water relations in a Mojave Desert mixed shrub community: a comparison of three geomorphic surfaces. Journal of Arid Environments 29: 339-351.
- Soudek, P., Katrusakova, A., Sedlacek, L., Petrova, S., Koci, V., Marsik, P., Griga, M., and Vanek, T., 2010. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (*Linum usitatissimum* L.). Archives of Environmental Contamination and Toxicology 59: 194-203.
- Titus, J.H., Nowak, R.S., and Smith, S.D., 2002. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments 52: 269-292.
- Turk, J., and Graham, R.C., 2011. Distribution and Properties of Vesicular Horizons in the Western United States. Soil Science Society of America Journal 75 (4):1449-1461.
- West, N.E., 1990. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research 20: 179-223.
- Williams, A.J., 2011. Co-development of biological soil crusts, soil-geomorphology, and landscape biogeochemistry in the Mojave Desert, Nevada, U.S.A. – Implications for ecological management. Ph.D. Dissertation. University of Nevada Las Vegas, Department of Geoscience. 386 pages.
- Yin, X-X., Chen, J., Qin, J., Sun, G-X., Rosen, B.P., and Zhu, Y-G., 2011. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology 156: 1631-1638.

APPENDIX: Soil Profile Descriptions

Soil profiles were described between April 13th and May 24th, 2010. Horizon descriptions and nomenclature followed standard procedures and terminology prescribed by Schoenenberger (2002) and Soil Survey Staff (2010). Locations indicated are UTM coordinates (NAD 83, zone 11N), and should be considered accurate to \pm 3m. Buckwheat status indicates the presence or absence of *Eriogonum corymbosum* var. *nilesii* for the given site. Soil profile descriptions are presented first for the Coyote Springs study area, then Gold Butte, and then Bitter Spring.

I. Coyote Springs Soil Profile Descriptions

Site CS 00 Location: 685815E, 4071465N Buckwheat: Present

A--0 to 3 centimeters; 7.5YR 7/2, 7.5YR 5/2 moist; 30 percent fine subangular gravel (5 percent limestone, 20 percent eroded petrocalcic, and 5 percent chert); strong very thick platy structure; soft, very sticky, slightly plastic; no roots; many (10+) very fine, many (5) medium and fine vesicular pores throughout; strongly effervescent; abrupt wavy boundary. (0 to 4 centimeters thick).

Bk--3 to 9 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; medium fine angular blocky structure; loose to slightly hard, slightly sticky; common (1) fine roots between peds; many (5+) very fine irregular pores throughout; 85 percent fine to medium, hard, irregular plates and blocks of calcium carbonate throughout separated by soil peds; stage III brecciated; strongly effervescent; abrupt wavy boundary.

Bkm1t--9 to 17 centimeters; 7.5YR 8/2 silty clay, 7.5YR 7/3 moist; strong fine angular blocky structure; slightly hard to extremely hard, slightly sticky; no roots; many (5) very fine to medium dendritic tubular pores; 95 percent medium, extremely hard, irregular calcium carbonate plates and blocks throughout; 5 percent silt and clay, clay skins coating dendritic tubular pores; stage III; strongly effervescent; abrupt wavy boundary.

Btkm2 (or Btkmb)--17 to 39+ centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; strong medium angular blocky structure; extremely hard, slightly sticky; common (2) very fine roots between calcium carbonate peds; common (3) very fine and fine dendritic tubular pores; 25 percent coarse, extremely hard, calcium carbonate dendritic tubular and irregular root casts containing secondary dendritic tubular pores on cast surfaces; stage II to III; violently effervescent.

Site CS 01 Location: 685085E, 4071465N Buckwheat: Absent

Av--0 to 4 centimeters;7.5YR 8/2, 7.5YR 8/3 moist; 5 to 35 percent fine limestone and eroded pedogenic carbonate gravel as desert pavement; strong thick to very thick platy structure; soft to slightly hard, very sticky, very plastic; no roots; many (10+) very fine vesicular and irregular pores; up to15 percent finely disseminated carbonate throughout, 5YR 8/2; common faint silt coats on ped faces and in pores; violently effervescent; very abrupt wavy boundary.

Bky--4 to 13 centimeters; 7.5YR 7/3, 7.5YR 7/4 moist; moderate medium to coarse subangular blocky structure; soft, very sticky, very plastic; common (4) very fine to fine roots throughout; common (4) very fine dendritic tubular pores throughout; 2 to 20 percent prominent, soft, 7.5YR 7/3 gypsum crystals throughout around faces of peds; common red-stained sand grains throughout; violently effervescent; abrupt wavy boundary.

Bkq--13 to 34 centimeters; 7.5YR 8/2, 7.5YR 8/3 moist; moderate medium to coarse subangular blocky structure; soft, very sticky, very plastic; common (4) fine, common (2) medium, common (1) coarse roots throughout; common (1) medium dendritic tubular pores throughout; up to20 percent finely disseminated carbonate throughout, 7.5YR 8/2; hard, clear 7.5YR 8/2 silica coats on ped faces; violently effervescent; clear wavy boundary.

Bkqm--34 to 52+ centimeters; 7.5YR 8/2, 7.5YR 8/3 moist; strong medium to coarse subangular blocky structure; common (2) fine to medium roots throughout; common (1) very fine, common (2) fine and medium dendritic tubular pores throughout; 2 millimeter white, botryoidal silica masses under ped surfaces; red (7.5YR8/4) sand filling root casts; clay coats in pores; violently effervescent.

Site CS 02 Location: 685740E, 4071675N Buckwheat: Present

Av--0 to 3 centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; 10 percent subrounded limestone and soil carbonate gravel to cobble as pavement; strong medium to thick platy structure; soft, very sticky, very plastic; no roots; many (10+) very fine to fine vesicular and irregular pores; strongly effervescent; very abrupt wavy boundary.

Bk--3 to 10 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; moderate medium platy parting to weak fine subangular blocky structure; soft, moderately sticky, very plastic; common (1) fine and medium roots throughout; many (5) very fine to fine dendritic tubular pores throughout; 50 percent hard, white, 1 centimeter angular, soil carbonate fragments brecciated in situ; strongly effervescent; abrupt wavy boundary.

Btk1--10 to 26 centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; moderate medium to coarse subangular blocky structure; moderately hard, moderately sticky, very plastic; common (3) very fine roots

throughout; many (5) very fine to medium dendritic tubular pores throughout; faint, diffuse, 7.5YR 6/4 silt coats in pores; 1 percent fine calcium carbonate nodules throughout, distinct, abrupt; strongly effervescent; clear wavy boundary.

Btk2--26 to 50+ centimeters; 7.5YR 7/3, 7.5YR 7/3 moist; strong medium subangular blocky structure; very hard, slightly sticky; common (1) fine roots throughout; clear silt or clay coats on ped faces; 0.9 percent faint, white, soft masses throughout; calcified root traces, rounded, eroded; strongly effervescent.

Site CS 03 Location: 686305E, 4071400N Buckwheat: Present

Avk--0 to 5 centimeters; 10YR 8/2, 10YR 6/3 moist; 15 percent fine subangular limestone and carbonate gravel as pavement; strong very thick platy structure; slightly hard, moderately sticky, moderately plastic; no roots; many (10+) very fine to medium vesicular pores throughout; 50 percent finely disseminated carbonate coating pores and throughout, faint; 30 to 50 percent very fine white, prominent calcium carbonate masses filling vesicular pores, especially at depth; 15 percent discontinuous 1 to 2 millimeter calcium carbonate pendants under plates; violently effervescent; abrupt smooth boundary.

Bk1--5 to 17 centimeters; 10YR 8/2, 10YR 7/3 moist; weak thin platy structure parting to strong fine subangular blocky structure; slightly to moderately hard, slightly sticky; common (1) very fine roots throughout; common (1) very fine dendritic tubular, common (4) very fine irregular pores throughout; 30 percent finely disseminated carbonate 10YR 7/2 on ped faces, cracks, and lining pores; grey to red very fine sand in dendritic tubular pores; strongly effervescent; clear wavy boundary

Bk2--17 to 35+ centimeters; 10YR 8/2, 10YR 7/2 moist; moderate medium subangular blocky structure; soft to extremely hard, very sticky, moderately plastic; no roots; many (10) very fine vesicular, many (5) very fine to fine dendritic tubular pores throughout; 50 percent finely disseminated carbonate throughout especially coating pores, 10YR 8/2; 0.9 percent very fine gypsum crystals; prominent, fine, brown (10YR5/4) sand coating dendritic tubular pores; violently effervescent.

Site CS 04 Location: 686425E, 4071500N Buckwheat: Absent

Avk--0 to 4 centimeters; 7.5YR 8/2, 7.5YR 6/3 moist; 25 percent fine subrounded petrocalcic gravel; strong very thick platy structure; slightly hard, moderately sticky, slightly plastic; no roots; many (10) very fine to fine, many (5) medium vesicular pores; 2 to 5 percent 1 to 3 millimeter calcium carbonate masses in pores; few, faint finely disseminated carbonate

throughout; distinct cemented calcium carbonate silans coating all pores, 7.5YR 8/2; violently effervescent; abrupt wavy boundary.

Bk1--4 to 9 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; no rock fragments; strong fine subangular blocky structure; soft to hard, slightly sticky; no roots; many (8) very fine dendritic tubular pores throughout; 5 percent finely disseminated carbonate on faces of peds, distinct; 5 percent soft calcium carbonate masses in pores, prominent; calcium carbonate silans throughout, distinct, 7.5YR 8/2; thickness varies between 5 to 8 centimeters; strongly effervescent; clear wavy boundary.

Bk2--9 to 19 centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; no rock fragments; strong medium subangular blocky structure; slightly hard, moderately sticky; common (4) very fine roots throughout; 20 percent finely disseminated carbonate and calcium carbonate masses throughout, distinct, white; red stained silt in pores; calcium carbonate silans throughout, 7.5YR 8/2 to 7.5YR 8/3; violently effervescent; clear wavy boundary.

Bkq--19 to 31+ centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; 20 percent reworked root cast fragments; moderate medium subangular blocky structure; slightly hard to extremely hard, moderately sticky; no roots; 30 percent finely disseminated carbonate and calcium carbonate masses throughout, distinct, white; red stained silt in pores; calcium carbonate silans throughout, prominent, possible silica, 7.5YR 8/2 to 7.5YR 8/3; violently effervescent.

Site CS 05 Location: 685680E, 4071775N Buckwheat: Present

Av--0 to 5 centimeters; 7.5YR 7/2, 7.5YR 5/3 moist; 70 percent petrocalcic fragments from 0 to 2 centimeters; strong very thick platy structure; soft to slightly hard, slightly sticky, slightly plastic; common (1) very fine roots throughout; many (10) very fine, many (5) fine, common (1) medium vesicular pores throughout; 35 percent finely disseminated carbonate and silt coats throughout, faint, diffuse, 7.5YR 7/2; 35 percent very fine calcium carbonate masses on the bottoms of ped faces, white, distinct; violently effervescent; very abrupt wavy boundary.

Bk--5 to 20 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; no rock fragments; moderate fine subangular blocky structure; soft, slightly sticky; common (3) very fine, common (1) medium roots throughout; common (1) fine dendritic tubular pores throughout; 5 percent fine calcium carbonate masses throughout, white, soft; 10 percent finely disseminated carbonate throughout; violently effervescent; clear wavy boundary.

Bkqm1--20 to 37 centimeters; 7.5YR 8/2, 7.5YR 6/4 moist; no rock fragments; strong medium to coarse subangular blocky structure; extremely hard, slightly sticky; common (2) fine and medium roots throughout; common (4) fine dendritic tubular pores throughout; 25 percent finely disseminated carbonate; botryoidal red sand filling dendritic pores; silica and calcium carbonate cement throghout; violently effervescent; clear wavy boundary.

Bkqm2--37+ centimeters. Not described.

Site CS 06 Location: 685686E, 4071465N Buckwheat: Absent

Av--0 to 7 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; 75 percent gravel as desert pavement; strong very thick platy structure; soft, moderately sticky, moderately plastic; common (2) very fine roots throughout; many (10+) very fine to fine vesicular and irregular pores throughout; 0.9 percent very fine silt coats lining pores, very faint; strongly effervescent; abrupt wavy boundary.

Bk--3 to 9 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; no rock fragments; moderate fine subangular blocky structure; soft, slightly sticky, moderately plastic; many (5) very fine to fine roots throughout; many (5) very fine to fine dendritic tubular pores throughout; 5 to 10 percent white masses throughout, irregular, soft, distinct, clear; thin clay skins on faces of peds, faint; strongly effervescent; abrupt wavy boundary.

2Bt1--9 to 17 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; 4.9 percent fine to medium limestone gravel; strong angular blocky structure; slightly hard, moderately sticky, very plastic; common (2) fine roots throughout; common (1) fine dendritic tubular pores throughout; faint to prominent white masses on faces of peds throughout, irregular, gradual to distinct; clay skins throughout, blocky clay structure; strongly effervescent; abrupt wavy boundary.

2Bt2--17 to 39+ centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; no rock fragments; strong fine to coarse angular blocky structure; slightly hard, moderately sticky, very plastic; common (2) fine roots throughout; many (5) very fine, common (2) fine to medium dendritic tubular pores throughout; clay skins lining pores and on faces of peds, 7.5YR 6/3, 7.5YR 6/4; strongly effervescent.

Site CS 07 Location: 685915E, 4071465N Buckwheat: Absent

Avk--0 to 2 centimeters;7.5YR 8/2, 7.5YR 8/2 moist; 35 percent gravel and cobble; strong thick to very thick platy structure; soft, very sticky, moderately plastic; no roots; many (10+) very fine to medium vesicular; 20 percent finely disseminated carbonate; 50 percent calcium carbonate films on faces of peds, distinct, clear, 7.5 YR 8/2; accumulated calcium carbonate silt or mud; violently effervescent.

Bk1--2 to 11 centimeters; 10YR 8/2, 10YR 7/3 moist; no rock fragments; moderate thin platy parting to subangular blocky structure; soft to hard, moderately sticky, moderately plastic; common (3) very fine roots throughout; many (5) very fine to fine dendritic tubular, common (3) very fine irregular pores throughout; 10 to 15 percent finely disseminated carbonate; 25 percent fine calcium carbonate films, clear, 10YR 8/2; violently effervescent.

Bk2--11 to 35 centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; 5 percent fine to medium gravel; strong medium to coarse angular blocky structure; soft, moderately sticky, moderately plastic; common

(1) fine roots throughout; common (3) very fine to fine dendritic tubular pores throughout; 50 to 80 percent finely disseminated carbonate; 50 to 80 percent medium calcium carbonate films, faint, 7.5YR 7/2; red iron stained sand filling pores; coarse calcium carbonate root casts reworked, indurated; violently effervescent.

Bk3--35 to 43+ centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; 5 percent fine to medium gravel; strong medium subangular blocky parting to angular blocky structure; soft, moderately sticky, very plastic; common (1) fine roots throughout; many (5) fine dendritic tubular pores; 60 to 90 percent finely disseminated carbonate; 80 to 90 percent medium calcium carbonate films, faint, 7.5YR 6/4; stage I to II filaments; coarse calcium carbonate root casts reworked, indurated; violently effervescent.

Site CS 08 Location: 685540E, 4071470N Buckwheat: Absent

Av--0 to 5 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 3 percent coarse limestone gravel; strong very thick platy structure; slightly hard, moderately sticky, moderately plastic; no roots; many (10+) very fine, common (3) fine vesicular pores; 15 percent finely disseminated carbonate and silt coats throughout, distinct, diffuse, 7.5YR 7/3; 0.9 percent fine calcium carbonate masses throughout, white, round, spherical, clear; violently effervescent; abrupt smooth boundary.

Bk1--5 to 12 centimeters; 10YR 7/3 loam, 10YR 5/4 moist; 20 percent limestone gravel to cobble; moderate thin platy parting to medium subangular blocky structure; soft, slightly sticky, nonplastic; common (2) very fine roots throughout; common (2) very fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate throughout, white, distinct, diffuse; 2 millimeter calcium carbonate pendants on the bottoms of limestone clasts; violently effervescent; clear smooth boundary.

Bk2--12 to 32 centimeters; 10YR 7/3 loam, 10YR 5/4 moist; 30 percent limestone gravel to cobble; moderate medium to coarse subangular blocky structure; soft, nonsticky, nonplastic; common (4) very fine roots throughout; 2 percent calcium carbonate filaments throughout; 10 percent finely disseminated carbonate throughout; violently effervescent; abrupt smooth boundary.

Bk3--32 to 50 centimeters; 10YR 6/3 silt loam, 10YR 5/4 moist; 25 percent limestone gravel; strong coarse subangular blocky structure; moderately hard, slightly sticky, slightly plastic; many (5 to 10) very fine roots throughout; 5 percent finely disseminated carbonate and filaments throughout; 0.9 percent very fine calcium carbonate masses, white, sharp, distinct; violently effervescent; abrupt wavy boundary.

BC--50 to 68+ centimeters; 7.5YR 6/4 silt loam, 7.5YR 4/4 moist; 30 percent limestone gravel; weak fine subangular blocky structure; loose, nonsticky, nonplastic; many (5) very fine roots throughout; no pores; 5 to 10 percent finely disseminated carbonate throughout, white, distinct, diffuse; thinly white calcium carbonate coats on all surfaces of rock fragments; violently effervescent.

Site CS 09 Location: 685660E, 4071565N Buckwheat: Absent

Av--0 to 1 centimeters; 10YR 7/3, 10YR 5/3 moist; 5 to 20 percent fine limestone gravel; moderate thin platy structure; soft, moderately sticky, moderately plastic; no roots; many (5 to 10) very fine to fine vesicular pores; physical surface crust only; strongly effervescent; very abrupt smooth boundary.

Bk1--1 to 6 centimeters; 10YR 7/3, 10YR 5/3 moist; 2 to 5 percent fine subrounded limestone gravel; weak thin platy parting to moderate fine subangular blocky structure; soft to hard, moderately sticky; common (3) very fine roots throughout; common (1) very fine, common (2) medium dendritic tubular pores throughout; 30 to 50 percent calcium carbonate nodules, hard, irregular; 30 to 50 percent soft calcium carbonate masses dusting faces of peds, faint; stage II calcium carbonate (hard nodules); strongly effervescent; abrupt wavy boundary

Bk2--6 to 15 centimeters; 10YR 7/3, 10YR 5/4 moist; 0.9 percent subrounded limestone gravel; moderate medium subangular blocky structure; soft, slightly sticky, slightly plastic; many (5) very fine roots throughout; common (3) very fine dendritic tubular pores throughout; 10 percent soft calcium carbonate masses, irregular, clear, abrupt; stage II throughout; strongly effervescent; clear irregular boundary.

Bt1--15 to 34 centimeters; 10YR 7/3, 10YR 6/3 moist; no rock fragments; strong fine to medium angular blocky structure; slightly hard, slightly sticky, moderately plastic; common (1) fine and medium roots throughout; common (4) fine dendritic tubular pores throughout; calcium carbonate masses, few, faint, irregular, soft, gradual; clay skins on faces of peds and coating pores, distinct, brown, prominent, clear; stage II calcium carbonate; strongly effervescent; clear wavy boundary.

Bt2--34 to 48 centimeters; 10YR 7/3, 10YR 6/4 moist; no rock fragments; strong coarse angular blocky structure; slightly hard, slightly sticky, moderately plastic; common (1) fine and medium roots throughout; many (10) fine, common (3) medium dendritic tubular pores throughout; clay skins on faces of peds and coating pores, distinct, brown, prominent, clear; strongly effervescent; clear wavy boundary

Bt3--48 to 52+ centimeters; very dense, very hard, very similar to Bt2; strongly effervescent.

Site CS 10 Location: 686010E, 4071465N **Buckwheat**: Absent

Av--0 to 4 centimeters; 7.5YR 8/2, 7.5YR 8/3 moist; 5 percent fine limestone gravel, 20 percent fine petrocalcic gravel; strong thick platy structure; slightly hard, very sticky, very plastic; no roots; many (10+) very fine to medium vesicular pores throughout; 20 percent finely

disseminated carbonate; 20 percent calcium carbonate films throughout matrix and coating pores, distinct, clear; strongly effervescent; abrupt wavy boundary.

Bk1--4 to 9 centimeters; 7.5YR 8/2, 7.5YR 8/3 moist; no rock fragments; moderate thin platy parting to moderate medium subangular blocky structure; slightly hard, moderately sticky, very plastic; common (3) very fine, common (1) fine roots throughout; common (4) fine dendritic tubular pores throughout; 25 to 30 percent finely disseminated carbonate; 25 to 30 percent calcium carbonate films throughout, faint, clear, 7.5YR 8/2; 5 percent eroded petrocalcic nodule fragments; 5 to 10 percent medium to coarse eroded petrocalcic nodules and root cast fragments; violently effervescent; clear wavy boundary.

Bk2--9 to 44+ centimeters; 7.5YR 8/2, 7.5YR 8/3 moist; no rock fragments; strong medium subangular blocky structure; moderately hard, moderately sticky, very plastic; common (1) fine roots throughout; many (5) very fine, common (2) fine dendritic tubular pores throughout; finely disseminated carbonate; very fine iron stained sand lining pores; 20 to 30 percent calcium carbonate films throughout matrix and lining pores, white, distinct, clear; violently effervescent.

Site CS 11 Location: 686410E, 4071360N Buckwheat: Present

Av--0 to 4 centimeters; 7.5YR 8/2, 7.5YR 6/4 moist; 30 to 50 percent very fine and fine petrocalcic gravel; strong thick to very thick platy structure; soft, very sticky, moderately plastic; no roots; many (10+) very fine to fine vesicular, common (1) medium irregular pores throughout; 30 percent finely disseminated carbonate throughout matrix and lining pores, very fine, faint, soft, irregular, 7.5YR 8/2; 0.9 percent fine crystals throughout; violently effervescent; abrupt wavy boundary.

Bk1--4 to 12 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; no rock fragments; moderate thin to thick platy parting to fine subangular blocky structure; soft, moderately sticky, moderately plastic; many (5) very fine to fine roots throughout; many (10) very fine, common (2) fine dendritic tubular, common (1) fine irregular pores throughout; 10 percent masses throughout, soft, white, irregular, prominent; 30 percent finely disseminated carbonate throughout, white, 7.5YR 8/2; 50 percent red silt and very fine sand filling pores, distinct; violently effervescent; clear wavy boundary.

Bk2--12 to 29 centimeters; 10YR 8/2, 10YR 7/3 moist; no rock fragments; strong fine subangular blocky structure; soft to hard, very sticky, very plastic; many (5) very fine, common (1) medium roots throughout; many (5) very fine and fine dendritic tubular pores throughout; 20 percent finely disseminated carbonate throughout, white; common to many cement/silan on faces of peds; prominent red stained silt and cement, some clay, filling pores; violently effervescent; clear wavy boundary.

Bk3--29 to 49 centimeters; 10YR 8/2, 10YR 6/3 moist; no rock fragments; strong fine to medium subangular blocky structure; soft; common (2) fine, common (1) medium roots throughout; 0.9 percent finely disseminated carbonate, white; calcium carbonate masses and filaments, soft, white, prominent; calcium carbonate coats lining all pores, cracks and faces of peds, distinct; violently effervescent; gradual wavy boundary.

Bkq--49 to 56+ centimeters; 10YR 8/2, 10YR 7/2 moist; 10 percent root casts or calcium carbonate/silica nodules; moderate medium subangular blocky structure; slightly hard to extremely hard; common (1) coarse roots throughout; 50 percent finely disseminated carbonate throughout, white; calcium carbonate coats lining all pores, cracks, nodules/cemented root casts and faces of peds, distinct; strongly effervescent.

Site CS 12 Location: 686185E, 4071400N Buckwheat: Present

Av--0 to 3 centimeters; 10YR 8/2, 10YR 6/2 moist; 50 percent fine petrocalcic gravel; strong thick platy structure; soft, moderately sticky, moderately plastic; no roots; many (10+) very fine to medium vesicular pores throughout; 20 percent finely disseminated carbonate throughout, soft, white, distinct, 10YR 8/2; many silt coats on faces of peds and lining pores, faint, 10YR 8/2; violently effervescent; abrupt wavy boundary.

Bk--3 to 11 centimeters; 10YR 8/2, 10YR 7/2 moist; no rock fragments; strong fine to medium subangular blocky structure; soft to very hard; many (5) very fine, common (1) fine to medium roots throughout; many very fine dendritic tubular pores throughout; finely disseminated carbonate, calcium carbonate and silica throughout; red stained silt and fine sand lining fine pores; reworked calcium carbonate nodules, plates and blocks; strongly effervescent; abrupt wavy boundary.

Bkq--11 to 44+ centimeters; 10YR 8/2, 10YR 7/2 moist; no rock fragments; soft to extremely hard, moderately sticky, very plastic; common (2) very fine, common (1) medium and coarse roots throughout; common (4) fine dendritic tubular pores throughout; 20 percent finely disseminated carbonate throughout; red stained sand filling pores; silica coats on faces of peds and throughout matrix, thin, faint, common, grey 10YR 8/1, 10YR 7/1; 4.9 percent reworked calcium carbonate root casts; strongly effervescent.

Site CS 13 Location: 686225E, 4071400N Buckwheat: Present

Av--0 to 3 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; 70 percent fine subangular petrocalcic gravel; strong thick platy structure; soft to slightly hard, very sticky, very plastic; no roots; many (10+) very fine to medium vesicular and irregular pores throughout; 15 to 25 percent finely

disseminated carbonate, white, diffuse, faint, soft; many silt and calcium carbonate coats lining pores and faces of peds, white, 7.5YR 8/2; violently effervescent; abrupt wavy boundary.

Bk--3 to 9 centimeters; 7.5YR 8/2, 7.5YR 8/2 moist; no rock fragments; moderate medium subangular blocky structure; soft to extremely hard, slightly sticky; common (1) very fine roots throughout; skeletal very fine irregular, common (3) very fine dendritic tubular pores throughout; finely disseminated carbonate on faces of peds and lining pores; red silt lining pores; violently effervescent; abrupt wavy boundary.

Bkq--9 to 44+ centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; 10 percent reworked calcium carbonate root casts; strong medium subangular blocky structure; slightly hard, moderately sticky, very plastic; no roots; common (3) fine, common (2) medium dendritic tubular pores throughout; finely disseminated carbonate and silica on faces of peds and lining pores, faint, hard, 7.5YR 8/2; many cemented silans lining pores and faces of peds, faint, 7.5YR 8/2; common red stained very fine sand lining pores; 10 percent reworked coarse (2 to 5 centimeters) calcium carbonate root casts; violently effervescent.

Site CS 14 Location: 685895E, 4071375N Buckwheat: Absent

Bk--0 to 23 centimeters; 10YR 6/3, 10YR 4/3 moist; 0.9 percent gravel; moderate coarse angular blocky structure; slightly hard, nonsticky, slightly plastic; common (1) very fine roots throughout; many (5) very fine dendritic tubular pores throughout; 15 percent finely disseminated carbonate throughout, white, irregular, soft, faint; very fine; 1 percent fine calcium carbonate masses throughout, white, soft, prominent, distinct; upper 1 to 4 centimeters is lightly weathered B horizon, in process of eroding; violently effervescent; abrupt wavy boundary.

Btky--23 to 47+ centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 4.9 percent limestone gravel; strong fine to coarse angular blocky structure; hard, moderately sticky, very plastic; common (2) very fine and fine roots throughout; many (5 to 10) very fine dendritic tubular pores throughout; 5 percent 1 to 3 millimeter gypsum or calcium carbonate nests throughout cracks and on faces of peds, white, needle-like, diffuse; 50 percent very fine to medium clay coats throughout, brown, distinct; violently effervescent.

Site CS 15 Location: 685844E, 4071318N Buckwheat: Present

A--0 to 2 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; 50 percent petrocalcic gravel; strong thick platy structure; soft, slightly sticky, very plastic; no roots; many (7) very fine, common (3) fine, and medium vesicular pores throughout; 25 percent finely disseminated carbonate and silt coats throughout, soft, faint, 7.5YR 8/2; strongly effervescent; abrupt wavy boundary.

2Btkb--2 to 45+ centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; no rock fragments; strong fine to coarse subangular blocky structure; slightly hard, very sticky, very plastic; common (3) very fine roots throughout; many (5+) fine to coarse dendritic tubular pores throughout; 30 percent calcium carbonate root casts, hard, white, prominent, 0.5 centimeters wide by 3 centimeters long; 5 to 10 percent finely disseminated carbonate throughout, faint, diffuse, white; 25 percent clay skins lining pores and faces of peds, brown; violently effervescent.

Site CS 16 Location: 685600E, 4071475N Buckwheat: Absent

Av--0 to 5 centimeters; 10YR 6/3, 10YR 5/4 moist; 40 percent gravel as pavement; strong very thick platy structure; slightly hard, slightly sticky, moderately plastic; common (1) very fine roots throughout; many (5) very fine, many (7) fine to medium vesicular pores; 35 to 50 percent finely disseminated carbonate and/or silt coats throughout matrix and lining pores, faint, diffuse, 10YR 6/3; violently effervescent; abrupt smooth boundary.

Bk1--5 to 18 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 15 percent fine and medium petrocalcic and limestone gravel; strong medium subangular blocky structure; slightly hard, nonsticky, nonplastic; common (1) very fine and fine roots throughout; common (1) fine and medium dendritic tubular pores throughout; 15 to 20 percent finely disseminated carbonate on faces of peds, white, distinct, diffuse; 2 to 5 percent medium calcium carbonate masses throughout, soft, white, sharp; thin (0.9 millimeter) calcium carbonate coating rock fragments; violently effervescent; clear smooth boundary.

Bk2--18 to 47+ centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 20 percent fine to medium limestone gravel; strong fine to medium subangular blocky structure; slightly to moderately hard, nonsticky, slightly plastic; common (2) very fine roots throughout; common (3) fine to medium dendritic tubular pores throughout; 20 percent finely disseminated carbonate lining pores, in cracks and on faces of peds, white, prominent, diffuse; 0.5 to 2 millimeter calcium carbonate pendants on bottoms of rock fragments; violently effervescent.

Site CS 17 Location: 686035E, 4071330N Buckwheat: Absent

Av--0 to 8 centimeters; 7.5YR 6/2 sandy clay loam, 7.5YR 5/3 moist; moderate thick platy structure; soft, moderately sticky, slightly plastic; common (3) fine and medium roots throughout; many (10+) very fine vesicular and irregular pores throughout; 10 to 20 percent finely disseminated carbonate throughout, soft, faint; 2 percent calcium carbonate masses lining pores, white, distinct, clear; strongly effervescent; abrupt wavy boundary.

Bk1--8 to 18 centimeters; 7.5YR 6/3 sandy loam, 7.5YR 5/3 moist; limestone and petrocalcic fragments; moderate fine to medium subangular blocky structure; soft, slightly sticky, nonplastic; many (5) very fine and fine roots throughout; many (5) very fine dendritic tubular pores throughout; 20 percent finely disseminated carbonate throughout, soft, faint; strongly effervescent; stage I; clear wavy boundary.

Bk2--18 to 51 centimeters; 7.5YR 7/2 sandy loam, 7.5YR 5/3 moist; 5 percent fine (2 to 4 millimeters) gravel; 20 percent petrocalcic fragments; moderate fine to medium subangular blocky structure; soft, slightly sticky, nonplastic; many (10) very fine, common (3) medium roots throughout; common (3) very fine dendritic tubular pores; 20 percent finely disseminated carbonate and filaments throughout, white, distinct, soft; stage I; strongly effervescent.

C--51+ centimeters; 30 percent loose sand and gravel; massive; strongly effervescent.

Note: There is no Coyote Springs Site #18. This site was originally planned using GIS and remote sensing data, but was cancelled because its soil geomorphic setting would not have contributed useful information to this project and/or presented logistical challenges. Site approval (archaeological survey) and field data collection had already begun in the study area when this site was cancelled, thus it remains as an apparent but artificial gap in our list of study sites.

Site CS 19 Location: 685800E, 4071785 Buckwheat: Absent

Av--0 to 9 centimeters; 10YR 6/3 sandy loam, 10YR 4/4 moist; 20 percent coarse gravel to fine cobble limestone; moderate thick platy structure; soft, nonsticky, nonplastic; many (5) very fine, common (2) fine roots throughout; many (10+) very fine vesicular pores throughout; 20 percent finely disseminated carbonate throughout, distinct, white, diffuse; strongly effervescent; abrupt smooth boundary.

Bk--9 to 27 centimeters; 10YR 6/3, 10YR 4/4 moist; 60 percent limestone gravel and cobble; moderate fine subangular blocky structure; soft, nonsticky, slightly plastic; common (4) very fine, common (1) fine and coarse roots throughout; no pores; 15 percent finely disseminated carbonate throughout, faint, diffuse, 10YR 6/3; all clast have old, reworked calcium carbonate casts; reworked calcium carbonate nodules and fragments from rhizoliths in Las Vegas formation; strongly effervescent; abrupt smooth boundary.

C--27 to 43+ centimeters; 10YR 6/3, 10YR 5/4 moist; 50 percent fine limestone gravel to cobble; single grained; loose, nonsticky, nonplastic; many (5) very fine roots throughout; no pores; 10 percent finely disseminated carbonate; 2 to 5 percent sand-sized calcium carbonate fragments, prominent, reworked; strongly effervescent.

Site CS 20 Location: 685710E, 4071750N Buckwheat: Absent

Av--0 to 10 centimeters; 7.5YR 8/2, 7.5YR 5/4 moist; strong thick platy structure; slightly hard, very sticky, very plastic; common (2) very fine roots throughout; many (10+) fine to medium vesicular pores throughout; 50 percent finely disseminated carbonate and silt coats throughout, faint, diffuse, 7.5YR 8/2; violently effervescent; abrupt wavy boundary.

Bk--10 to 36+ centimeters; 10YR 7/3, 10YR 5/4 moist; 35 percent gravel, stones; massive; loose, nonsticky, nonplastic; common (2) very fine, common (1) fine roots throughout; no pores; 10 to 20 percent finely disseminated carbonate throughout, faint, white; 1.9 percent very fine (less than 2 millimeters) calcium carbonate masses, white, discontinuous; violently effervescent.

Site CS 21 Location: 685681E, 4071631N Buckwheat: Absent

A--0 to 1 centimeters; 10YR 6/3, 10YR 5/3 moist; 15 percent subrounded limestone gravel to stone; moderate thin platy structure; soft, slightly sticky, moderately plastic; no roots; many (5) very fine vesicular and irregular pores throughout; strongly effervescent; very abrupt wavy boundary.

Bk--1 to 8 centimeters; 10YR 6/3, 10YR 5/3 moist; no rock fragments; strong fine to medium angular blocky structure; loose to soft, slightly sticky, moderately plastic; common (1) fine and medium roots throughout; common (3) very fine dendritic tubular and vesicular pores throughout; 5 percent fine to medium (<5 millimeters) calcium carbonate masses throughout, irregular, white, soft; oxidized organic matter lining pores; possible very thin clay coats on faces of peds; stage II; strongly effervescent; abrupt smooth boundary

Btk1--8 to 36 centimeters; 10YR 6/4, 10YR 5/4 moist; no rock fragments; moderate fine subangular blocky structure; soft, slightly sticky, very plastic; common (2) fine, common (1) medium roots throughout; many (8) fine dendritic tubular pores throughout; 20 percent calcium carbonate masses throughout, irregular, faint, white, diffuse; clay coats on faces of peds, in cracks and lining pores; strongly effervescent; clear wavy boundary.

Btk2--36 to 48 centimeters; 10YR 7/3, 10YR 6/3 moist; no rock fragments; strong fine to medium angular blocky structure; slightly hard, slightly sticky, moderately plastic; common (1) fine roots throughout; many (10) very fine and fine dendritic tubular pores throughout; 30 percent calcium carbonate masses throughout, irregular, faint, white, diffuse; thin clay coats lining pores; strongly effervescent; clear wavy boundary

Bkm--48 to 53+ centimeters; 10YR 8/2, 10YR 7/3 moist; no rock fragments; strong medium angular blocky structure; rigid; common (1) fine to coarse roots throughout; common (3) very fine and fine dendritic tubular pores throughout; very thin clay coats on faces of peds and lining pores; violently effervescent.

Site CS 22 Location: 685845E, 4070805N Buckwheat: Absent

Av--0 to 8 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 35 percent limestone gravel; strong very thick platy structure; slightly hard, very sticky, moderately plastic; many (5) very fine roots throughout; many (10) very fine, many (5) fine, common (2) medium vesicular and irregular pores throughout; 20 percent finely disseminated carbonate and/or silt throughout matrix and lining pores, distinct; violently effervescent; abrupt wavy boundary.

Bk1--8 to 34 centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; 25 percent limestone gravel to cobble; soft, moderately sticky, moderately plastic; many (5) very fine and fine, common (2) medium roots throughout; common (3) very fine to fine dendritic tubular pores throughout; 25 percent many very fine to coarse calcium carbonate masses coating rock fragments, soft, white, prominent; 10 to 20 percent finely disseminated carbonate throughout; violently effervescent; abrupt smooth boundary.

Bk2--34 to 45+ centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; 9 percent limestone gravel to cobble; strong medium subangular blocky structure; soft, nonsticky, slightly plastic; common (3) very fine roots throughout; common (4) fine dendritic tubular pores throughout; finely disseminated carbonate lining pores and throughout matrix; violently effervescent.

Site CS 23 Location: 685860E, 4071390N Buckwheat: Absent

Avk--0 to 5 centimeters; 7.5YR 8/2, 7.5YR 7/3 moist; 40 percent very fine and fine gravel, petrocalcic fragments throughout; strong thick and very thick platy structure; slightly hard, moderately sticky, moderately plastic; no roots; many (10+) very fine and fine vesicular and irregular pores throughout; 20 percent finely disseminated carbonate and/or silt coats throughout and lining pores, soft, faint, irregular; possible (inherited) fine (<2 millimeters) calcium carbonate nodules throughout, white, hard; violently effervescent; abrupt wavy boundary.

Bkq--5 to 17 centimeters; 10YR 8/2, 10YR 8/3 moist; no rock fragments; medium thin platy parting to medium fine and medium angular blocky structure; moderately hard, slightly sticky; common (2) very fine roots throughout; many (5) very fine, common (3) fine and common (2) medium dendritic tubular pores throughout; 50 percent finely disseminated carbonate throughout, distinct, diffuse, white; 10 percent silica and/or calcium carbonate microcrystals as hard cement on faces of peds and lining pores, Grey 6/3; 5 percent red sand lining pores; reworked/welded paleosol horizon; violently effervescent; clear wavy boundary.

Bkqm--17 to 48+ centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; no rock fragments; strong fine and medium angular blocky structure; slightly to extremely hard, moderately sticky; no roots; common (2) very fine and medium, common (3) fine dendritic tubular pores throughout; 35

percent finely disseminated carbonate throughout, distinct, diffuse, white; 25 percent silica and calcium carbonate as hard cement on faces of peds and lining pores; 8 percent red sand filling pores and coating ped faces, prominent; reworked/welded paleosol horizon; violently effervescent.

Site CS 24 Location: 685950E, 4070805N Buckwheat: Absent

Av--0 to 8 centimeters; 10YR 7/3, 10YR 5/4 moist; 30 percent very fine through coarse limestone gravel; strong thick platy structure; slightly hard, moderately sticky, moderately plastic; no roots; many (10+) very fine irregular and vesicular and fine vesicular pores throughout; 50 percent finely disseminated carbonate and silt coats throughout, faint, 10YR 7/3; violently effervescent; abrupt wavy boundary.

Bk--8 to 18 centimeters; 10YR 6/4, 10YR 4/4 moist; fine and medium subangular blocky structure; soft, slightly sticky, moderately plastic; many (5) very fine, common (3) fine, common (1) coarse roots throughout; common (2) fine dendritic tubular pores throughout; 20 percent finely disseminate carbonate throughout, faint, 10YR 6/4; 2 to 5 percent very fine soft white masses throughout, prominent; violently effervescent; clear wavy boundary.

Bkq1--18 to 35 centimeters; 10YR 7/3, 10YR 4/4 moist; no rock fragments; strong medium angular blocky structure; soft to moderately hard, slightly sticky, moderately plastic; many (5) very fine, common (2) medium roots throughout; common (3) fine dendritic tubular pores throughout; 20 percent finely disseminate carbonate lining pores, white, distinct; very fine white nested crystals lining pores; possible silica as cement and durinodes, 1 to 2 centimeters; indurated root casts, reworked; strongly effervescent; clear wavy boundary.

Bkq2--35 to 51+ centimeters; 10YR 7/3, 10YR 4/4 moist; no rock fragments; strong coarse angular blocky structure; very hard; common (3) very fine, common (1) fine and medium roots throughout; many (5+) fine dendritic tubular pores throughout; strongly effervescent.

Site CS 25 Location: 686135E, 4070805N Buckwheat: Present

Av--0 to 7 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; strong very thick platy structure; slightly hard, moderately sticky, slightly plastic; no roots; many (10+) very fine and fine vesicular, many (5) very fine irregular pores throughout; 5 percent finely disseminated carbonate on faces of peds and throughout matrix, faint, diffuse, white, 7.5YR 7/3; thin silans lining vesicular pores, 7.5YR 7/3; strongly effervescent; abrupt wavy boundary.

Bk--7 to 14 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 5 percent petrocalcic gravel; medium thin platy parting to medium fine and medium subangular blocky structure; soft, slightly sticky, slightly plastic; many (7) very fine roots throughout; many (5) very fine and fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate; rare to few silt coats lining pores, faint; strongly effervescent; abrupt wavy boundary.

Bqk--14 to 23 centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; strong fine and medium subangular blocky structure; very hard; common (1) medium roots throughout; many (7) very fine and fine dendritic tubular pores throughout; 25 percent finely disseminated carbonate throughout, white, distinct; unknown cement coating ped faces and throughout matrix, 7.5YR 7/3, microcrystalline; red sand filling pores; violently effervescent; abrupt wavy boundary.

Bqkm--23 to 32+ centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; strong medium subangular blocky structure; indurated pan; very hard; no roots; many (7) very fine and fine dendritic tubular pores throughout; 50 percent finely disseminated carbonate throughout, white, distinct; 20 percent unknown cement coating ped faces and throughout matrix, 7.5YR 7/3, microcrystalline; red sand coating and filling pores; violently effervescent.

Site CS 26 Location: 685525E, 4071385N **Buckwheat**: Absent

Av--0 to 6 centimeters; 10YR 7/4, 10YR 4/6 moist; 10 percent fine limestone gravel as pavement; strong very thick platy structure; slightly hard, very sticky, moderately plastic; common (1) very fine roots throughout; many (10) very fine and fine, many (5) medium vesicular pores throughout; 25 percent calcium carbonate coats on the bottom of ped faces, prominent, diffuse, soft, pink, 5YR 2/3; 50 percent finely disseminated carbonate and silt coats throughout, distinct, diffuse, 10YR 7/4; violently effervescent; abrupt smooth boundary.

Bk--6 to 30 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; 50 percent medium limestone gravel to cobble; moderate medium subangular blocky structure; soft, slightly sticky, slightly plastic; common (4) very fine and common (1) fine roots throughout; common (1) fine dendritic tubular pores throughout; 30 percent calcium carbonate coats on faces of peds and in cracks, white; calcium carbonate filaments throughout, prominent, diffuse, white; all clast faces thinly coated with calcium carbonate; violently effervescent; abrupt wavy boundary.

C--30 to 50+ centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 70 percent limestone coarse gravel through medium cobble; weak fine and medium subangular blocky structure; loose and soft, nonsticky, nonplastic; common (2) very fine roots throughout; no pores; 5 percent finely disseminated carbonate throughout, white, faint, diffuse; violently effervescent.

Site CS 27 Location: 685965E, 4071675N Buckwheat: Present

Av--0 to 5 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 15 to 20 percent limestone gravel; strong very thick platy structure; slightly hard, nonsticky, slightly plastic; no roots; many (5+) very fine and fine vesicular, very fine irregular pores throughout; 30 percent very fine and fine white masses and nodules throughout; skeletal; 80 percent surface covered by pavement, 20 percent surface covered by limestone and petrocalcic gravel; slightly to strongly effervescent; very abrupt wavy boundary.

Bk--5 to 17 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; no rock fragments; moderate fine and medium subangular blocky parting to weak thin platy structure; moderately hard, slightly sticky, nonplastic; common (3+) very fine roots throughout; common (3+) very fine and fine vesicular and dendritic tubular pores throughout; 0.9 percent iron stains and silt filling pores throughout, diffuse; fine through coarse calcium carbonate nodules and masses throughout, irregular and platy; thin silt or clay coats on faces of peds and lining pores; entire profile is reworked; slightly to strongly effervescent; clear wavy boundary.

Bkm--17 to35+ centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; no rock fragments; moderately medium subangular blocky structure; very hard, nonsticky, nonplastic; many (5+) very fine, common (1) coarse roots throughout; many (10+) very fine vesicular, common (1) medium dendritic tubular pores throughout; 0.9 percent iron stains; fine through coarse calcium carbonate nodules and masses; silt and clay coats lining pores; slightly to strongly effervescent; gradual wavy boundary.

2Btkb--17 to35+ centimeters; 7.5YR 6/3, 7.5YR 5/3 moist; no rock fragments; moderately coarse subangular blocky structure; soft, slightly sticky, moderately plastic; common (1) fine and medium roots throughout; common (3+) very fine and fine dendritic tubular pores throughout; 5 to 20 percent iron masses and stains lining root pores and throughout matrix, diffuse, 7.5YR 5/6; 10 percent calcified root traces, 4 centimeter diameter, 4 to 6 centimeter length, 7.5YR 6/3; 2 percent calcium carbonate nodules, 5 millimeters, 7.5YR 8/2; slightly to strongly effervescent; lower boundary not observed.

Site CS 28 Location: 685660E, 4071230N Buckwheat: Absent

Av--0 to 8 centimeters; 10YR 6/3, 10YR 4/4 moist; 60 percent gravel; moderate thick platy structure; soft, nonsticky, slightly plastic; common (3) very fine and fine roots throughout; many (10+) fine vesicular, common (10) medium dendritic tubular pores throughout; 50 percent finely disseminated carbonate and silt coats throughout, distinct, 10YR 6/3; violently effervescent; abrupt wavy boundary.

Bw--8 to 20 centimeters; 10YR 6/4, 10YR 5/4 moist; 75 percent gravel; moderate fine subangular blocky structure; soft, nonsticky, slightly plastic; many (5) very fine, common (2) fine and medium roots throughout; common (4) very fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate throughout, faint, 10YR 6/4; calcium carbonate coats on coarse rock fragments, no orientation; violently effervescent; abrupt wavy boundary.

C--20 to 38+ centimeters; 10YR 6/3, 10YR 4/4 moist; 85 percent gravel; massive; loose, nonsticky, nonplastic; many (5) very fine, common (2) medium roots throughout; no pores; 9 percent finely disseminated carbonate throughout, faint, 10YR 6/3; violently effervescent.

Site CS 29 Location: 685600E, 4070805N Buckwheat: Absent

Av--0 to 8 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 75 percent gravel through stones; strong very thick platy structure; slightly hard, very sticky, moderately plastic; common (1) fine roots throughout; many (10+) very fine through medium vesicular, many (5+) very fine and fine irregular pores throughout; finely disseminated carbonate and silt coats throughout, faint, 7.5YR 7/3; violently effervescent; very abrupt wavy boundary.

Bk1--8 to 18 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; 60 percent gravel; moderate medium subangular blocky structure; slightly hard, nonsticky, nonplastic; common (4) very fine, common (1) fine roots throughout; common (3) very fine dendritic tubular pores throughout; thin (0.9 millimeter) calcium carbonate masses as pendants on the bottom of rock fragments; finely disseminated carbonate and filaments throughout, white, prominent; marked increase of finely disseminated carbonate, especially within top 1 centimeter; stage I to II; violently effervescent; clear wavy boundary.

Bk2--18 to 32+ centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; moderate medium subangular blocky structure; common (3) very fine, common (1) fine, common (2) medium roots throughout; common (4) very fine and fine dendritic tubular pores throughout; violently effervescent.

Site CS 30 Location: 685740E, 4070805N Buckwheat: Absent

Av--0 to 7 centimeters; 10YR 7/3, 10YR 5/4 moist; 25 percent limestone gravel; strong very thick platy structure; slightly hard, moderately sticky, moderately plastic; common (1) very fine roots throughout; many (10+) very fine through medium vesicular, many (5) very fine irregular pores throughout; finely disseminated carbonate and silt throughout, distinct; silt coats lining vesicular pores; violently effervescent; abrupt wavy boundary.

Bk1--7 to 18 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 35 percent limestone gravel; strong medium subangular blocky structure; soft, moderately sticky, slightly plastic; common (4) very

fine and fine, common (1) coarse roots throughout; common (2) very fine and fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate throughout, white; discontinuous soft white coats on faces of peds and on the bottom of ped surfaces; 20 percent silt coats throughout, faint; red sand filling pores; strongly effervescent; clear wavy boundary.

Bk2--18 to 43+ centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; 50 percent gravel and cobble; strong medium subangular blocky structure; soft, nonsticky, slightly plastic; common (3) very fine and fine, common (1) medium and coarse roots throughout; common (3) very fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate; strongly effervescent.

(end of Coyote Springs profiles)

II. Gold Butte Soil Profile Descriptions

Site GB 00 Location: 755829E, 4037047N Buckwheat: Present

A--0 to 7 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; no rock fragments; strong medium platy structure; soft, nonsticky, slightly plastic; no roots; many (10) fine tubular pores throughout; 0.5 centimeter calcium carbonate masses as pendants and gypsum on the bottom of plates, 7.5YR 8/3; slightly effervescent; very abrupt wavy boundary.

By1/Bw1--7 to 10 centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; no rock fragments; weak fine subangular blocky structure; soft, nonsticky, nonplastic; common (1) fine and medium roots throughout; many (10) fine tubular pores throughout; 2 to 5 percent fine gypsum masses throughout, distinct, white, hard; slightly effervescent; clear smooth boundary.

By2/Bw2--10 to 42 centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; no rock fragments; weak to medium coarse subangular blocky structure; soft, nonsticky, nonplastic; many (10) fine, common (2) medium, common (3) coarse roots throughout; many (10) fine tubular, common (3) medium dendritic tubular pores throughout; 10 percent fine to medium gypsum masses, white, distinct, hard; slightly effervescent; clear smooth boundary.

Cr--42 to 75+ centimeters; 7.5YR 6/4, 7.5YR 6/4 moist; massive parting to moderate medium angular blocky structure; soft, nonsticky, nonplastic; common (3) fine and medium roots throughout; many (5) medium irregular and dendritic tubular pores throughout; 10 percent fine to medium gypsum masses, white, distinct, hard; slightly effervescent.

Site GB 01 Location: 755835E, 4037860N Buckwheat: Present

A--0 to 5 centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; 2 to 5 percent gravel; moderate medium platy structure; soft, nonsticky, slightly plastic; no roots many (10+) very fine vesicular and irregular pores throughout; gypsum and calcium carbonate masses as pendants, white, very distinct; slightly effervescent; very abrupt wavy boundary.

Bw1--5 to 16 centimeters; 7.5YR 8/3, 7.5YR 6/4 moist; no rock fragments; weak fine and medium platy parting to subangular blocky structure; soft, nonsticky, nonplastic; common (1) fine roots throughout; many (10+) very fine vesicular and irregular pores throughout; 10 to 15 percent fine gypsum masses throughout, distinct; red iron stained silt, irregular, interspersed with gypsum crystals; very fine gypsum srystals throughout, sand sized and smaller; irregular reprecipitated gypsum; slightly effervescent; clear smooth boundary.

Bw2--16 to 43 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; no rock fragments; massive parting to moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) medium, common (3) very fine and fine roots throughout; common (2) fine irregular pores throughout; oxidized root traces; blocky, clayey silt lenses; 10 to 15 percent fine gypsum masses throughout, distinct; slightly effervescent; gradual smooth boundary.

Cr-- 43 to 53 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; structureless parting to weak fine subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine and fine roots throughout; common (2) fine irregular pores throughout; 10 to 15 percent fine gypsum masses throughout, distinct; slightly effervescent; abrupt irregular boundary.

R--53+ centimeters; 10YR 7/3, clayey siltstone.

Site GB 02 Location: 755560E, 4038220N **Buckwheat**: Absent

Av--0 to 8 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; moderate thick platy structure; soft, slightly sticky, slightly plastic; no roots; many (10+) very fine to medium vesicular and irregular pores throughout; 10 to 20 percent fine through coarse gypsum masses on the bottom of plates, platy to spherical, white, soft, distinct; 1 millimeter to 1 centimeter agglomerate; strongly effervescent; abrupt smooth boundary.

By1--8 to 19 centimeters; 7.5YR 7/4, 7.5YR 5/6 moist; no rock fragments; moderate medium angular blocky structure; soft, nonsticky, nonplastic; common (3) fine, common (1) medium roots throughout; many (10+) very fine and fine irregular pores throughout; 5 to 15 percent fine gypsum masses and filaments, white; round gypsum spar lining pores and on the faces of peds; 10 percent skeletal gypsum spar; 5 to 10 percent pedogenic gypsum; strongly effervescent; clear smooth boundary.

By2--19 to 35 centimeters; 5YR 6/4, 5YR 5/6 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; many (5) fine, common (1) medium roots throughout; many (6) very fine and fine dendritic tubular and irregular pores throughout; 10 percent 1 to 2 millimeter gypsum masses and filaments lining pores and on the faces of peds, prominent, white; strongly effervescent; abrupt smooth boundary.

By3--35 to 75 centimeters; 5YR 6/4, 5YR 5/4 moist; no rock fragments; weak to moderate medium subangular blocky structure; soft, slightly sticky, nonplastic; no roots; many (10+) very fine to fine irregular pores throughout; 15 percent very fine gypsum masses; 15 percent fine gypsum spar, grey, recrystallized; very fine blocks of red clay throughout; strongly effervescent; gradual smooth boundary.

By4/Cr--75+ centimeters; 7.5YR 6/4; no rock fragments; weak medium subangular blocky structure; slightly hard to hard, moderately sticky, slightly plastic; no roots; many (5) very fine irregular pores throughout; 4.9 percent gypsum masses; diffuse red stains (2.5YR 4/8) lining dendritic tubular pores; slightly effervescent.

Site GB 03 Location: 755555E 4038200N Buckwheat: Absent

A--0 to 5 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; no rock fragments; moderate medium platy parting to subangular blocky structure; soft, slightly sticky, moderately plastic; no roots; many (10+) very fine irregular pores throughout; 1 centimeter gypsum masses as pendants on the bottom of plates, white, prominent; very fine gypsum snowballs lining vesicular pores, sharp, distinct; slightly effervescent; very abrupt wavy boundary.

By1--5 to 13 centimeters; 5YR 8/3, 5YR 6/3 moist; no rock fragments; moderate coarse subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine roots throughout; many (10+) very fine irregular pores throughout; 10 percent gypsum masses throughout, soft, white, prominent, 1 to 3 millimeter, spherical to irregular, distinct; slightly effervescent; abrupt smooth boundary

By2--13 to 39 centimeters; 5YR 7/4, 5YR 5/4 moist; no rock fragments; moderate medium to coarse subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine, many (5) fine to medium roots throughout; many (5) very fine irregular, common (1) medium dendritic tubular pores throughout; 2 percent gypsum masses throughout, soft, white, irregular, prominent, sharp, abrupt; slightly effervescent; clear smooth boundary

By3--39 to 57 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, slightly sticky, nonplastic; common (2) fine, common (1) medium roots throughout; many (10+) very fine and fine irregular and skeletal pores; 1 to 2 percent fine gypsum masses, white; strongly effervescent; clear smooth boundary

Cr--57 to 75+ centimeters; 5YR 6/4, 5YR 4/4 moist; blocky, fissile claystone; 5 percent very fine and fine soft gypsum masses; sparry gypsum crystals between clay blocks; strongly effervescent.

Site GB 04 Location: 755620E, 4038150N Buckwheat: Absent

Av--0 to 6 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; strong medium to thick platy structure; soft, slightly sticky, slightly plastic; common (1) very fine and fine roots throughout; many (10+) very fine and fine vesicular, common (3) to many (5) fine and medium irregular and dendritic tubular pores throughout; few very fine silans on the surfaces of peds; strongly effervescent; abrupt smooth boundary.

B1--6 to 27 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; moderate medium subangular blocky structure; soft, moderately sticky, moderately plastic; many (5) very fine, common (2) fine, common (1) coarse roots throughout; many (5) very fine, common (1) medium irregular and dendritic tubular pores throughout; common very fine and fine diffuse, distinct

white masses on the surfaces of peds and in between cracks, 0.5 millimeters; very fine white microrhizae throughout, diffuse; strongly effervescent; gradual smooth boundary

B2--27 to 44 centimeters; 7.5YR 6/6, 7.5YR 4/6 moist; no rock fragments; moderate medium to coarse subangular blocky structure; soft, moderately sticky, moderately plastic; many (10+) very fine and fine roots throughout; many (10) very fine and fine tubular pores throughout; common very fine and fine diffuse, distinct white masses and filaments on the surfaces of peds and in between cracks, 0.5 millimeters; thin clay coats lining pores; strongly effervescent; abrupt smooth boundary

By--44 to 64 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; moderate medium angular blocky structure; soft, slightly sticky, slightly plastic; common (1) very fine and fine roots throughout; many (10) very fine, common (3) fine and medium dendritic tubular pores throughout; 5 percent fine gypsum masses as snowball morphology, abrupt, distinct, white; 0.5 millimeter cuteans in between cracks and lining pores; strongly effervescent; very abrupt wavy boundary

Cr--64+ centimeters; indurated gypsipherous siltstone; very hard; strongly effervescent.

Site GB 05 Location: 755545E, 4038170N **Buckwheat**: Absent

Av--0 to 3 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; no rock fragments; moderate very thick platy structure; slightly hard, nonsticky, nonplastic; no roots; common (2) very fine vesicular, many (10+) very fine irregular pores throughout; 50 percent fine and medium gypsum spar, lithogenic, skeletal; 2 percent fine gypsum masses lining pores; discontinuous; red clay and grey gypsum, prominent; slightly effervescent; clear smooth boundary.

C--3 to 10 centimeters; 7.5YR 8/3, 7.5YR 7/3 moist; no rock fragments; moderate fine angular blocky structure; slightly hard, nonsticky, nonplastic; common (1) very fine and fine roots throughout; skeletal pores; spary gypsum and some pedogenic gypsum lining pores; slightly effervescent; gradual wavy boundary.

Cr--10 to 41+ centimeters; 7.5YR 7/4, 7.5YR 6/4 moist; no rock fragments; soft to very hard, nonsticky, nonplastic; common (1) fine and medium roots throughout; skeletal pores; mostly lithogenic gypsum; 10 to 15 percent red clay; slightly effervescent.

Site GB 06 Location: 755930E, 4037900N Buckwheat: Present

A--0 to 3 centimeters; 7.5YR 6/4, 7.5YR 5/6 moist; no rock fragments; strong medium platy structure; soft, slightly sticky, moderately plastic; no roots; common (3) very fine vesicular,

common (2) very fine irregular pores throughout; discontinuous gypsum masses on the bottom of plates, less than 2 millimeters thick; strongly effervescent; very abrupt smooth boundary.

By1--3 to 7 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; no rock fragments; strong fine and medium platy structure; soft, slightly sticky, slightly plastic; common (2) very fine and fine roots throughout; many (5) very fine irregular pores throughout; 20 percent gypsum masses and nodules, white, distinct, spherical to platy; strongly effervescent; very abrupt smooth boundary

By2--7 to 12 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, slightly plastic; common (3) fine and medium roots throughout; many (5) very fine and fine dendritic tubular pores throughout; 5 percent gypsum masses, irregular; slightly effervescent; clear wavy boundary

BC--12 to 31 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; many (5+) very fine and fine roots throughout; many (10+) very fine to medium irregular and skeletal pores throughout; 20 to 30 percent fine gypsum spar throughout; gypsum lining pores; 70 to 80 percent clay lining pores; slightly effervescent; clear wavy boundary

Cr--31 to 60+ centimeters; moderate fine to coarse angular blocky structure, lithogenic; common (3) very fine roots throughout; sedimentary blocks, mixed characteristics, predominant massive indurated gray siltstone with gypsum in between fractures; red fissile to blocky siltstone or clayey siltstone; zone weathered, same as other sites; slightly effervescent.

Site GB 07 Location: 755792E, 4037842N Buckwheat: Absent

Av--0 to 5 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; 2 to 5 percent fine through coarse round gravel; strong very thick platy structure; soft, slightly sticky, moderately plastic; common (1) very fine roots throughout; many (10+) very fine and fine vesicular and irregular pores throughout; strongly effervescent; very abrupt smooth boundary.

By--5 to 12 centimeters; 7.5YR 7/4, 7.5YR 4/6 moist; moderate medium subangular blocky structure; soft, slightly sticky, slightly plastic; common (1) medium and coarse roots throughout; many (10+) very fine irregular, common (2) fine dendritic tubular pores throughout; 10 percent very fine and fine gypsum masses and lenses primarily concentrated at the base of the horizon; strongly effervescent; abrupt wavy boundary.

Cr--12 to 62+ centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; moderate coarse angular blocky structure; moderately hard, nonsticky, nonplastic; common (2) fine, common (1) coarse roots throughout; skeletal pores; 50 percent gypsum; 50 percent clay; some secondary realteration of gypsum; slightly effervescent.

Site GB 08 Location: 755909E, 4037871N Buckwheat: Present

Av--0 to 4 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; 1.9 percent limestone gravel; moderate medium through very thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (10+) very fine and fine vesicular pores throughout; few fine (less than 2 millimeters) gypsum masses on the bottom of plates and filling vesicular pores, discontinuous; slightly effervescent; abrupt wavy boundary.

By--4 to 10 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 1 percent coarse angular siltstone cobble at top of horizon; moderate thin to medium platy structure; soft, slightly sticky, moderately plastic; common (1) fine and medium roots throughout; many (10+) very fine vesicular, many (5+) very fine dendritic tubular pores throughout; many (10+) very fine and fine gypsum masses and nodules lining pores; strongly effervescent; abrupt wavy boundary

CB/C--10 to 36 centimeters; 5YR 7/3, 5YR 4/4 moist; 1 percent coarse angular siltstone cobble at top of horizon; weak medium subangular blocky structure; hard, moderately sticky, moderately plastic; many (5 to 10) very fine, common (1) medium and coarse roots throughout; skeletal pores; common (4) very fine gypsum masses and lenses throughout matrix and in between plates and blocks; locally cemented by gypsum; lithochromatic mottles, 5YR 4/4, 5YR 7/2; strongly effervescent; clear wavy boundary

Cr--36+ centimeters; platy to blocky structure; hard, very rigid; siltstone/claystone; very thin lenses of gypsum spar in claystone plates; common (1) fine roots in between cracks; skeletal pores; strongly effervescent.

Site GB 09 Location: 755810E, 4037975N **Buckwheat**: Absent

Av--0 to 3 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 10 percent very fine to medium rounded limestone gravel; moderate thick and very thick platy structure; soft, slightly sticky, nonplastic; common (2) very fine roots throughout; many (5) very fine vesicular and irregular pores throughout; 5 percent finely disseminated carbonate throughout, faint, white; violently effervescent; very abrupt wavy boundary.

Bk--3 to 10 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 4.9 percent gravel; common (1) thin platy parting to moderate coarse subangular blocky structure; soft, nonsticky, nonplastic; common (2) fine roots throughout; common (4) very fine dendritic tubular pores throughout; 5 percent finely disseminated carbonate throughout and lining very fine roots and pores, faint, white; 20 percent silt coats throughout, faint, 7.5YR 6/4; violently effervescent; abrupt wavy boundary

Bky1--10 to 31 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 4.9 percent gravel; moderate medium and coarse subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine,

common (2) fine, common (1) medium roots throughout; common (1) very fine dendritic tubular pores throughout; 15 to 20 percent finely disseminated carbonate; few (0.9) gypsum masses throughout, white, distinct, less than 1 millimeter; violently effervescent; abrupt wavy boundary

Bky2—31 to 62+ centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 10 percent very fine to medium gravel; moderate fine and medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) fine roots throughout; common (1) very fine dendritic tubular pores throughout; 15 percent finely disseminated carbonate; few (0.9) gypsum masses, white, distinct, less than 1 millimeter; softer, weaker structure, almost loose; violently effervescent.

Site GB 10 Location: 755570E, 4038100N Buckwheat: Absent

A--0 to 4 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 20 percent gravel; moderate thick platy parting to fine to medium subangular blocky structure; soft, nonsticky, slightly plastic; common (2) very fine roots throughout; many (10+) very fine irregular pores throughout; strongly effervescent; abrupt wavy boundary.

Bw--4 to 16 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 20 percent gravel; weak medium and moderate coarse subangular blocky structure; soft, nonsticky, slightly plastic; common (3) very fine, common (1) fine and medium roots throughout; many (5) very fine dendritic tubular pores throughout; extremely faint, diffuse, white coats on the faces of peds; strongly effervescent; abrupt wavy boundary

C--16 to 54+ centimeters; 5YR 6/6, 5YR 5/6 moist; 65 percent gravel; structureless; nonsticky, nonplastic; many (10+) very fine roots throughout; no pores; very few, faint, diffuse, discontinuous white coats on coarse fragments; strongly effervescent.

Site GB 11 Location: 755597E, 4038121N

Buckwheat: Absent

A--0 to 3 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; strong very thick platy structure; soft, slightly sticky, slightly plastic; common (3) fine vesicular, many (5) very fine vesicular and irregular pores throughout; 0.5 to 1 centimeter thick continuous white gypsum pendants on the bottom of plates; strongly effervescent; abrupt wavy boundary.

Cr--3 to 13+ centimeters; sparry gypsum, white; skeletal pores; strongly effervescent.

Site GB 12 Location: 755825E, 4037947N Buckwheat: Absent

Av--0 to 7 centimeters; no rock fragments; strong very thick platy structure; soft, very sticky, slightly plastic; common (2) very fine roots throughout; many (10+) very fine to medium vesicular, common (3) very fine irregular pores throughout; 5 percent gypsum masses within pores and on the bottom of plates, white, round to irregular, some discontinuous pendants; 15 percent finely disseminated carbonate throughout, faint; violently effervescent; abrupt wavy boundary.

By1--7 to 20 centimeters; 5YR 7/4, 5YR 4/4 moist; no rock fragments; moderate medium subangular blocky structure; slightly hard, very sticky, moderately plastic; common (3) fine roots throughout; common (4) fine dendritic tubular, common (2) fine irregular pores throughout; 2 percent fine gypsum masses, white, prominent, soft, irregular; 5 to 10 percent finely disseminated carbonate and filaments throughout, discontinuous, white, soft; violently effervescent; abrupt wavy boundary

By2--20 to 44 centimeters; 5YR 7/4, 5YR 5/6 moist; no rock fragments; moderate medium and coarse angular blocky structure; slightly hard, moderately sticky, slightly plastic; common (3) very fine, common (1) medium roots throughout; 5 percent fine gypsum masses, white, prominent, soft, irregular; 5 percent fine, grey pedogenic gypsum lining pores; 20 percent finely disseminated carbonate throughout; violently effervescent; clear smooth boundary

BCy--44 to 67+ centimeters; 5YR 7/4, 5YR 4/6 moist; no rock fragments; moderate medium and coarse subangular blocky structure; slightly hard, slightly sticky, slightly plastic; no roots; 40 percent grey gypsum crystals; 40 percent red clay blocks, less than 2 millimeters, very fine; 10 percent fine gypsum masses, white, prominent, soft, irregular; gypsum coating pores; strongly effervescent.

Site GB 13 Location: 755907E, 4037909N Buckwheat: Absent

A--0 to 3 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; no rock fragments; moderate thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (5+) very fine and fine vesicular pores throughout; slightly effervescent; very abrupt wavy boundary.

Cr--3 to 27+ centimeters; 10YR 8/3, 10YR 8/3 moist; no rock fragments; massive; very rigid; common (2) very fine roots in between cracks; very fine (micro) sparry crystalline gypsum, distinct; skeletal, irregular very fine and fine pores; slightly effervescent.

Site GB 14 Location: 755818E, 4037875N Buckwheat: Present

Av--0 to 4 centimeters; 5YR 7/4, 5YR 5/4 moist; no rock fragments; strong very thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (10) very fine vesicular, common (2) fine irregular pores throughout; 0.1 to 1+ centimeter white, discontinuous gypsum pendants on the bottom of plates; strongly effervescent; abrupt wavy boundary.

By--4 to 14 centimeters; 5YR 7/4, 5YR 6/4 moist; no rock fragments; strong fine and medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) very fine roots throughout; many (10+) very fine and fine irregular, common (2) fine dendritic tubular pores throughout; gypsum spar and lithogenic clay; 5 percent gypsum masses lining pores, white, distinct, sharp; possible silt coats lining pores; strongly effervescent; gradual smooth boundary.

BC--14 to 34 centimeters; 5YR 6/4, 5YR 5/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) fine, common (1) medium roots throughout; common (3) fine dendritic tubular and irregular, skeletal pores throughout; gypsum spar and lithogenic clay; 4.9 percent pedogenic gypsum masses; 5 percent fine gypsum masses, white; strongly effervescent; clear irregular boundary.

Cr--34 to 68+ centimeters; varied lithogenic composition; blocky, gypsum, siltstone and claystone; fissile; many (5+) fine roots throughout; structural pores throughout; strongly effervescent.

Site GB 15 Location: 755765E, 4037860N **Buckwheat**: Absent

Av--0 to 6 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; 15 percent gravel; moderate thick platy structure; soft, slightly sticky, slightly plastic; common (2) very fine, common (1) fine roots throughout; many (5) very fine, common (2) medium vesicular, common (3) very fine irregular pores throughout; 20 percent finely disseminated carbonate and/or silans coating pores and sand grains and throughout, distinct; strongly effervescent; abrupt wavy boundary.

Bky--6 to 28 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 4.9 percent gravel; moderate medium and coarse angular blocky structure; soft, nonsticky, nonplastic; many (5) fine, common (2) medium roots throughout; common (1) very fine, common (3) fine dendritic tubular pores throughout; 0.9 percent 1 millimeter gypsum or calcium carbonate masses throughout, white, prominent, spherical; 20 percent finely disseminated carbonate throughout, abrupt; slightly effervescent; gradual smooth boundary.

C--28 to 69+ centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; no rock fragments; moderate coarse angular blocky structure; soft, slightly sticky, slightly plastic; common (3) very fine roots on the top of the horizon; skeletal pores throughout; weathered; gypsiferrous silt and clay, not blocky,

not firm; 50 percent gypsum crystals and clay blocks throughout; 5 percent very fine gypsum masses within pores, white; reprecipitated pedogenic gypsum snowballs and irregular masses concentrated at the upper 1 to 3 centimeters of horizon and filling all pores, white, prominent, spherical to irregular, soft; very slightly effervescent.

Site GB 16 Location: 755890E, 4037815N Buckwheat: Present

Av--0 to 2 centimeters; 7.5YR 7/4, 7.5YR 4/6 moist; 60 percent very fine to coarse mixed limestone gravel; strong thin to very thick platy structure; slightly hard, very sticky, moderately plastic; no roots; many (10) very fine vesicular, common (1) very fine dendritic tubular, common (2) fine irregular pores throughout; 15 percent finely disseminated carbonate, white, 7.5YR 7/4, faint; 5 to 10 percent gypsum masses throughout and especially lining pores, distinct, reprecipitated; violently effervescent; very abrupt wavy boundary.

By--2 to 23 centimeters; 5YR 7/4, 5YR 5/6 moist; no rock fragments; moderate medium angular blocky structure; slightly hard to hard; common (2) fine roots throughout; many (10) very fine irregular, many (5) fine dendritic tubular pores, skeletal pores throughout; 30 percent very fine to fine gypsum crystals throughout, distinct, clear; 5 percent gypsum masses lining pores; finely disseminated carbonate; 1 centimeter blocks of weathered clayey bedrock throughout; strongly effervescent; clear irregular boundary.

CB--23 to 33 centimeters; 5YR 7/3 to 5YR 4/4, 5YR 4/4 to 5YR 4/6 moist; no rock fragments; weak fine angular blocky structure; slightly hard to extremely hard; common (1) very fine and medium, common (2) fine roots throughout; common (3) very fine dendritic tubular and skeletal pores throughout; 30 percent very fine to fine gypsum crystals throughout, distinct, clear; 5 percent gypsum masses lining pores; finely disseminated carbonate; strongly effervescent; clear irregular boundary.

Cr--33 to 54+ centimeters; blocky gypsiferrous siltstone and claystone; lithogenic medium and coarse angular blocky structure; extremely hard; common (3) very fine roots throughout; skeletal pores throughout; strongly effervescent.

Site GB 17 Location: 755825E, 4037835N Buckwheat: Present

C1--0 to 14 centimeters; 5YR 8/2, 5YR 7/3 moist; no rock fragments; moderate coarse subangular blocky structure; hard, nonsticky, nonplatic; common (3+) very fine, common (1) medium roots throughout; fine and medium skeletal pores throughout; 20 to 80 percent gypsum, 5YR8/1; 20 to 80 percent clay, 5YR 4/4; surface crust is platy; slightly effervescent; clear wavy boundary.

C2--14 to 26 centimeters; 5YR 5/3, 5YR 4/3 moist; no rock fragments; weak medium subangular blocky structure; moderately hard, very sticky, very plastic; many (5+) very fine, common (1) medium roots throughout; skeletal pores throughout; 15 percent very fine gypsum masses on the faces of peds and in between cracks; mostly slightly altered claystone; strongly effervescent; abrupt wavy boundary.

C3--26 to 56 centimeters; 5YR 7/3, 5YR 6/3 moist; no rock fragments; moderate fine and medium subangular blocky structure; slightly hard, nonsticky, moderately plastic; common (3) very fine, common (1) coarse roots throughout; fine and medium skeletal pores throughout; 30 to 50 percent fine and medium gypsum spar, 5YR 8/1, remainder is clay; strongly effervescent; clear wavy boundary.

Cr--56 to 76+ centimeters; fissile claystone with 15 percent gypsum spar; slightly effervescent.

Site GB 18 Location: 755847E, 4037875N Buckwheat: Absent

A--0 to 4 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; no rock fragments; strong medium platy structure; soft, nonsticky, slightly plastic; no roots; many (10+) very fine vesicular and irregular pores throughout; 1 centimeter white pendants on the bottom of plates; very slightly effervescent; very abrupt wavy boundary.

By1--4 to 11 centimeters; 5YR 7/4, 5YR 6/4 moist; no rock fragments; weak medium subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine roots throughout; many (10+) very fine irregular and skeletal pores throughout; reprecipitated, fine gypsum throughout; slightly effervescent; abrupt smooth boundary.

By2--11 to 36 centimeters; 5YR 7/4, 5YR 5/4 moist; no rock fragments; weak medium subangular blocky structure; soft, nonsticky, slightly plastic; common (1) very fine and medium roots throughout; many (10+) very fine irregular and skeletal pores throughout; few distinct gypsum masses/fragments; reprecipitated gypsum; common (1) medium and coarse clay content (probably from bedrock) coating roots and base; slightly effervescent; clear smooth boundary.

BC--36 to 48 centimeters; 5YR 6/4, 5YR 4/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, slightly sticky, slightly plastic; no roots; many (10+) fine irregular pores throughout; 75 percent red fissile clay; 25 percent gypsum masses; clay content probably from bedrock; slightly effervescent; clear irregular boundary.

Cr/R--48+ centimeters; 7.5YR 7/4; gypsiferrous claystone/siltstone; medium to coarse angular blocky lithogenic structure; slightly effervescent.
Site GB 19 Location: 755864E, 4037895N Buckwheat: Absent

A--0 to 6 centimeters; 5YR 6/4, 5YR 4/4 moist; no rock fragments; strong medium platy structure; soft, slightly sticky, moderately plastic; common (2) very fine roots throughout; many (10) very fine vesicular, common (3) fine irregular pores throughout; 1 centimeter thick white gypsum pendants on the bottom of plates; slightly effervescent; very abrupt wavy boundary.

Bw--6 to 26 centimeters; 5YR 7/4, 5YR 6/4 moist; no rock fragments; weak fine and medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) fine and medium roots throughout; many (5+) very fine irregular pores throughout; very fine mottles of white gypsum masses, lithogenic; gypsum spar and fine clay, red aggregates, 2 to 4 centimeters; medium roots only growing at border to C horizon; slightly effervescent; clear smooth boundary.

Cr—26 to 46+ centimeters; 5YR 7/4, 5YR 5/4 moist; massive; moderate fine and medium subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine roots throughout; no pores; clay filling irregular pores and lining plates; red clay dominates gypsum, can be greater than 5 millimeters; very dense high clay content (lithogenic clay) primary claystone with 10 percent gypsum; slightly effervescent.

Site GB 20 Location: 755864E, 4037895N Buckwheat: Absent

Av--0 to 4 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; 2 percent surface limestone gravel; strong thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (10+) very fine to medium vesicular pores throughout; 1 centimeter thick white gypsum pendants between plates; strongly effervescent; very abrupt wavy boundary.

By1--4 to 10 centimeters; 5YR 5/4, 5YR 4/4 moist; no rock fragments; moderate medium platy parting to weak fine subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine roots throughout; many (10+) very fine and fine vesicular and irregular pores throughout; 2 to 5 percent very fine gypsum spar; slightly effervescent; abrupt smooth boundary.

By2--10 to 38 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; no rock fragments; weak fine and medium subangular blocky structure; soft, nonsticky, nonplastic; common (1) fine roots throughout; many (10+) fine and medium irregular and skeletal pores throughout; 30 percent fine gypsum spar lining pores; white gypsum spar and red claystone, sand to silt sized fragments; very slightly effervescent; gradual smooth boundary.

BC--38 to 73 centimeters; 7.5YR 5/4, 7.5YR 5/4 moist; no rock fragments; massive; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (3) fine, common (1) medium roots at the bottom of horizon; many (10+) fine and medium irregular and skeletal pores

throughout; white gypsum spar and red claystone, sand to silt sized fragments; pore and crystal sizes increase; very slightly effervescent; abrupt wavy boundary.

Cr--73 to 81+ centimeters; 7.5YR 6/4; platy to blocky; gypsiferrous siltstone with lense of gypsum spar and plates of fine microcrystalline gypsum; very slightly effervescent.

Site GB 21 Location: 755851E, 4037884N **Buckwheat**: Absent

A--0 to 2 centimeters; 7.5YR 7/2, 7.5YR 5/4 moist; no rock fragments; moderate fine and medium platy structure; soft, nonsticky, moderately plastic; no roots; many (5+) very fine irregular pores throughout; 50 percent weathered gypsum spar; slightly effervescent; very abrupt wavy boundary.

C--2 to 28 centimeters; 7.5YR 7/4, 5YR 6/4 moist; no rock fragments; moderate fine and medium subangular blocky structure; soft, nonsticky, nonplastic; many (5+) very fine, common (3) medium, common (1) coarse roots throughout; many (5) fine and medium dendritic tubular pores throughout; 5 to 10 percent gypsum spar, discrete areas of 7.5YR 7/4 silty clay; 7.5YR 7/6 gypsum masses; slightly effervescent; gradual irregular boundary.

Cr--28 to 49+ centimeters; weak medium subangular blocky structure; extremely hard, nonsticky, nonplastic; many (5+) very fine, common (1) medium roots throughout, in cracks and between blocks of peds; common (3) very fine irregular pores throughout; 90 percent fractured blocks of gypsum spar, spar is 10 to 15 percent red clay skeletal; noneffervescent.

Site GB 22 Location: 755830E, 4037790N Buckwheat: Absent

Av--0 to 5 centimeters; 7.5YR 7/3, 7.5YR 4/4 moist; no rock fragments; strong very thick platy structure; soft, slightly sticky, slightly plastic; no roots; many (10+) very fine and fine vesicular pores throughout; 50 percent finely disseminated carbonate throughout, faint, 7.5YR 7/3; strongly effervescent; clear wavy boundary.

Cr--5 to 36+ centimeters; massive; moderate coarse angular blocky structure; slightly to extremely hard, nonsticky, nonplastic; no roots; skeletal pores coated by reprecipitated gypsum; 50 percent very fine and fine gypsum crystals; 50 percent very fine and fine red clay blocks, 5YR 4/6; slightly weathered gypsum and claystone bedrock interspersed; slightly effervescent.

Site GB 23 Location: 755610E, 4038165N Buckwheat: Absent

A--0 to 6 centimeters; 5YR 6/4, 5YR 5/4 moist; no rock fragments; strong very thick platy structure; moderately hard, moderately sticky, very plastic; no roots; many (10+) very fine to coarse vesicular pores; 0.9 percent very fine silans coating pores; strongly effervescent; abrupt smooth boundary.

By1--6 to 16 centimeters; 5YR 6/4, 5YR 4/6 moist; no rock fragments; strong medium subangular blocky structure; slightly hard, moderately sticky, very plastic; common (3) very fine, common (1) fine and medium roots throughout; many (10+) very fine vesicular, common (3) very fine dendritic tubular pores throughout; 1 to 5 percent very fine gypsum masses throughout, diffuse, white, prominent, clear, platy; strongly effervescent; abrupt smooth boundary.

By2--16 to 43 centimeters; 5YR 6/4, 5YR 4/6 moist; no rock fragments; strong thin platy parting to moderate medium subangular blocky structure; slightly hard, nonsticky, nonplastic; common (3) very fine, common (1) coarse roots throughout; many (10) very fine and fine vesicular and skeletal pores throughout; fine recrystallized gypsum coating pores; skeletal gypsum spar; silt and gypsum spar, mixed lithogenic and pedogenic gypsum; strongly effervescent; clear smooth boundary.

By3--43 to 70 centimeters; 5YR 6/4, 5YR 4/6 moist; no rock fragments; moderate thin platy parting to strong coarse angular blocky structure; slightly hard, nonsticky, nonplastic; no roots; common (7) medium and coarse vesicular and skeletal pores throughout; fine recrystallized gypsum coating pores; skeletal gypsum spar; silt and gypsum spar; strongly effervescent; gradual smooth boundary.

By4/Cr--70 to 79+ centimeters; 2.5YR 5/6, 2.5YR 4/6 moist; no rock fragments; strong thick platy structure; soft, nonsticky, nonplastic; no roots; many (10+) very fine and fine dendritic tubular, irregular and vesicular pores throughout; fine gypsum spar lenses in pores and cracks, white diffuse masses; thin cutans in between cracks, platy; 5 percent mottled white gypsum; red (2.5YR 5/6) sand; slightly effervescent.

Site GB 24 Location: 755775E, 4037895N Buckwheat: Absent

Av--0 to 4 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; moderate thick platy structure; soft, slightly sticky, slightly plastic; common (3) very fine roots throughout; many (5) very fine vesicular, common (1) fine dendritic tubular pores throughout; 20 percent finely disseminated carbonate throughout, 7.5 YR 6/4; 20 percent silt coats throughout; strongly effervescent; abrupt wavy boundary.

Bky--4 to 34 centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; no rock fragments; moderate medium subangular blocky structure; soft, slightly sticky, slightly plastic; many (5) very fine, common (2) fine and medium roots throughout; common (3) very fine dendritic tubular pores throughout; 0.9 percent very fine white gypsum masses, less than 1 millimeter; strongly effervescent; abrupt wavy boundary.

C--34 to 51+ centimeters; 5YR 6/4, 5YR 4/6 moist; no rock fragments; moderate medium and coarse angular blocky structure; soft, moderately sticky, very plastic; common (1) fine roots throughout; skeletal pores; 50 percent gypsum coats on pores, common to many; 50 percent gypsum spar; 50 percent clay; strongly effervescent.

Site GB 25 Location: 755930E, 4037800N Buckwheat: Absent

Av--0 to 3 centimeters; 5YR 7/4, 5YR 4/4 moist; 30 percent gravel; moderate thin to thick platy structure; soft, moderately sticky, moderately plastic; common (3) very fine roots throughout; common (3) very fine irregular, many (5) very fine vesicular pores throughout; 20 percent finely disseminated carbonate infused with silt, 5YR 7/4; 20 percent silt coats throughout and coating pores, 5YR 7/4; violently effervescent; abrupt wavy boundary.

Bk1--3 to 10 centimeters; 5YR 6/4, 5YR 5/4 moist; 5 percent gravel; weak thin platy parting to moderate fine subangular blocky structure; loose to soft, slightly sticky, slightly plastic; many (5) very fine roots throughout; common (3) very fine dendritic tubular, common (2) very fine irregular pores throughout; 20 percent finely disseminated carbonate; 1 percent very fine soft, white calcium carbonate masses and filaments throughout; violently effervescent; clear smooth boundary.

Bk2--10 to 36 centimeters; 5YR 6/4, 5YR 4/6 moist; 4.9 percent gravel; moderate medium and coarse subangular blocky structure; soft, nonsticky, nonplastic; common (3) fine roots throughout; common (4) fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate around rock fragments and throughout matrix; violently effervescent; gradual wavy boundary.

Bk3--36 to 63+ centimeters; 5YR 6/4, 5YR 5/6 moist; 4.9 percent gravel; strong medium subangular blocky structure; soft, nonsticky, nonplastic; common (2) fine roots throughout; common (2) very fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate throughout, white; 0.9 percent very fine calcium carbonate filaments and masses, white, distinct; strongly effervescent.

Site GB 26 Location: 755530E, 4038220N Buckwheat: Absent

A--0 to 7 centimeters; 5YR 6/4, 5YR 5/4 moist; 40 percent round gravel; moderate thick platy parting to fine subangular blocky structure; soft, slightly sticky, slightly plastic; loose surface pavement, discontinuous; biological soil crust; strongly effervescent; abrupt wavy boundary.

C--7 to 41 centimeters; 5YR 6/4, 5YR 4/4 moist; 5 percent cobbles and stones, 15 to 20 percent fine to coarse gravel; weak fine and medium subangular blocky structure; loose, slightly sticky, nonplastic; many (10+) very fine, common (2) fine, common (1) medium roots throughout; no pores; possible extra fine, very faint, white, diffuse masses in matrix; strongly effervescent; abrupt smooth boundary.

Bwb--41 to 56 centimeters; 5YR 6/4, 5YR 5/4 moist; 2 to 5 percent very fine to medium gravel; moderate fine subangular blocky structure; soft, nonsticky, slightly plastic; many (5+) very fine roots throughout and in cracks; common (3) very fine irregular pores throughout; strongly effervescent; abrupt wavy boundary.

Byb--56 to 61+ centimeters; 5YR 7/3, 5YR 6/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (1) fine and medium roots throughout and on top of horizon; many (5+) very fine irregular pores throughout; 30 percent very fine and fine gypsum masses filling pores and throughout matrix, less than 2 millimeters, soft, white, prominent; pink-red clay, silt and sand; strongly effervescent.

Site GB 27 Location: 755910E, 4037750N Buckwheat: Present

A--0 to 5 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; 1 percent limestone gravel; strong thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (10+) very fine and fine vesicular, many (5+) very fine irregular pores throughout; common, discontinuous, 2 millimeter, white gypsum nodules on the bottom of plates and filling pores; strongly effervescent; very abrupt wavy boundary.

By--5 to 20 centimeters; 7.5YR 5/4, 7.5YR 4/4 moist; no rock fragments; moderate medium and coarse subangular blocky structure; soft, slightly sticky, moderately plastic; common (2) fine and medium roots throughout; many (10+) very fine irregular pores throughout; 15 to 25 percent very fine and fine gypsum masses and nodules filling pores, white, distinct; slightly effervescent; clear wavy boundary.

C--20 to 42 centimeters; 7.5YR 5/4, 7.5YR 4/4 moist; no rock fragments; weak medium subangular blocky structure; soft to extremely hard, moderately sticky, very plastic; common (1) fine and medium roots throughout; common (1) very fine dendritic tubular and skeletal pores

between plates and throughout; 1.9 percent gypsum masses; 50 percent diffuse stratified siltstone, 5YR 5/4, 7.5YR 7/3; very slightly effervescent; gradual smooth boundary.

Cr--42 to 54+ centimeters; mostly blocky, fissile; very rigid, extremely hard; siltstone and mudstone; lithogenic structure and bedding; indurated bedrock; common (2) very fine roots in between cracks, common (1) medium roots throughout; strongly effervescent.

Site GB 28 Location: 755685E, 4038020N Buckwheat: Absent

A--0 to 7 centimeters; 7.5YR 5/4, 7.5YR 4/4 moist; 20 percent fine and medium gravel; moderate very thick platy parting to weak fine subangular blocky structure; soft, nonsticky, slightly plastic; many (6) very fine roots throughout; many (10+) very fine irregular, common (3) fine dendritic tubular pores throughout; strongly effervescent; abrupt smooth boundary.

B--7 to 24 centimeters; 5YR 6/4, 5YR 4/4 moist; 5 percent fine and medium gravel; moderate medium and coarse subangular blocky structure; soft, nonsticky, nonplastic; common (4) very fine, common (1) fine roots throughout; common (3) very fine, common (1) fine dendritic tubular pores throughout; 0.9 percent very fine round masses and filaments, white, distinct, clear; strongly effervescent; abrupt smooth boundary.

C1--24 to 50 centimeters; 5YR 6/4, 5YR 5/4 moist; 20 percent fine to coarse gravel; weak fine subangular blocky structure; soft, nonsticky, nonplastic; many (5+) very fine, common (2) fine, common (1) medium roots throughout; common (3) very fine dendritic tubular pores throughout; possible very fine white masses; strongly effervescent; gradual smooth boundary.

C2--50+ centimeters; 5YR 6/4, 5YR 4/4 moist; 20 percent fine to coarse gravel; single grained; loose, nonsticky, nonplastic; common (3) fine, common (1) medium roots throughout; no pores; strongly effervescent.

Site GB 29 Location: 756025E, 4038045N Buckwheat: Absent

Av--0 to 5 centimeters; 5YR 6/4, 5YR 4/6 moist; 40 percent angular gravel; strong thin to thick platy structure; soft, slightly sticky, moderately plastic; no roots; many (10+) very fine to coarse vesicular pores throughout; 20 to 35 percent finely disseminated carbonate and silans throughout, faint, white, 5YR 6/4; strongly effervescent; abrupt wavy boundary.

Byk1--5 to 26 centimeters; 5YR 6/4, 5YR 4/6 moist; 10 percent very fine to medium gravel and gypsum fragments; strong medium subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine, common (2) fine roots throughout; many (10+) very fine irregular and skeletal pores throughout; 15 percent very fine to medium gypsum masses throughout matrix and

gypsum coating pores, prominent, white to grey, soft; 5 percent gypsum within gravel; 5 to 10 percent 1 centimeter gypsum crystal nests, prominent, white, sparry, porous; 20 percent finely disseminated carbonate and silans; strongly effervescent; abrupt wavy boundary.

Byk2--26 to 58 centimeters; 5YR 6/4, 5YR 5/4 moist; 25 percent gravel; strong medium subangular blocky structure; soft to slightly hard, nonsticky, nonplastic; many (5) very fine roots throughout; many (10+) fine and medium irregular pores throughout; 2 percent fine and medium gypsum masses, prominent, white, soft; 10 percent gypsum spar with skeletal irregular pores; 5 to 10 percent 1 centimeter gypsum crystal nests, prominent, white, sparry, porous; strongly effervescent; abrupt wavy boundary.

Byk3--39 to 58+ centimeters; 5YR 6/4, 5YR 5/4 moist; 4.9 percent very fine limestone gravel; moderate medium to coarse subangular blocky structure; soft, slightly sticky, nonplastic; many (5) very fine roots throughout; many (5+) very fine irregular, common (4) fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate/gypsum, diffuse, distinct, grey; 1 to 2 percent very fine to medium gypsum masses, white, prominent, soft; strongly effervescent.

Site GB 30 Location: 756125E, 4038055N Buckwheat: Absent

Av--0 to 4 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 0.9 percent gravel; strong very thick platy structure; soft to slightly hard, moderately sticky, moderately plastic; no roots; many (10+) very fine and fine, common (2) medium vesicular, common (3) very fine irregular pores throughout; 50 percent finely disseminated carbonate/silans; discontinuous white masses as pendants on the bottom of plates, soft, less than 0.5 centimeters thick; violently effervescent; abrupt wavy boundary.

By--4 to 20 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; no rock fragments; moderate coarse subangular blocky structure; slightly hard, slightly sticky, nonplastic; common (3) very fine and fine roots throughout; common (1) medium dendritic tubular, many (10+) very fine skeletal pores throughout; 35 to 50 percent very fine and fine gypsum spar and crystals, grey, slightly hard, distinct; gypsum coats; 10 to 15 percent silans or finely disseminated carbonate throughout, 7.5YR 7/3; violently effervescent; clear wavy boundary.

CB--20 to 36 centimeters; 5YR 6/3, 5YR 5/4 moist; no rock fragments; strong fine to medium subangular blocky structure; soft, moderately sticky, slightly plastic; many (5 to 10) very fine, common (1) medium roots throughout; 5 to 10 percent finely disseminated carbonate; gypsum coats, masses and irregular filaments throughout; variegated red, green and grey lithogenic 20 percent blocks of weathered clay, 0.1 to 0.5 centimeters thick; violently effervescent; clear irregular boundary.

Cr--36 to 58+ centimeters; 5YR 6/4, 5YR 5/4 moist; blocky, slightly weathered claystone and siltstone; lithogenic structure; soft to extremely hard; common (1) very fine roots throughout; similar to BC horizon, but only 10 percent soil and 90 percent rock; violently effervescent.

Site GB 31 Location: 755390E, 4038273N Buckwheat: Absent

A--0 to 9 centimeters; 7.5YR 6/4, 7.5YR 4/4 moist; no rock fragments; moderate thick platy parting to fine subangular blocky structure; soft, slightly sticky, moderately plastic; common (3) very fine roots throughout; many (10+) very fine and fine vesicular and irregular pores throughout; 5 percent fine (less than 3 millimeters) gypsum masses lining pores and on the bottom of plates and biological soil crust, white, prominent; 0.9 percent coarse gypsum fragments, irregular, soft, diffuse, gradual; strongly effervescent; very abrupt wavy boundary.

By1--9 to 28 centimeters; 5YR 5/4, 5YR 4/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (3) fine, common (2) coarse roots throughout; common (4) fine and medium dendritic tubular pores throughout; 20 to 35 percent fine to coarse gypsum masses and filaments, soft, white, prominent, sharp, up to 0.5 centimeters, irregular; slightly effervescent; abrupt wavy boundary.

By2--28 to 64 centimeters; 5YR 7/4, 5YR 5/6 moist; no rock fragments; moderate coarse subangular to angular blocky structure; soft, nonsticky, nonplastic; many (5) very fine, common (2) fine roots throughout; common (4) fine dendritic tubular pores throughout; 25 percent very fine gypsum masses and filaments; slightly effervescent; abrupt wavy boundary.

Cr--64+ centimeters; lithogentic, fissile/blocky; moderately hard, no roots.

Site GB 32 Location: 755621E, 4038286N Buckwheat: Absent

Av--0 to 6 centimeters; 5YR 7/4, 5YR 5/4 moist; 65 percent fine to coarse angular gravel; moderate medium platy structure; slightly hard, very sticky, very plastic; common (2) very fine roots throughout; many (10+) fine vesicular and irregular pores throughout; few thin silt coats lining vesicular pores, faint, 5YR 7/4; strongly effervescent; abrupt smooth boundary.

Bw1--6 to 14 centimeters; 5YR 6/4, 5YR 5/4 moist; 25 percent fine and medium angular and subangular gravel; moderate very thin platy parting to moderate fine and medium subangular blocky structure; soft, moderately sticky, very plastic; common (1) fine and medium roots throughout; common (3) fine, common (1) medium dendritic tubular pores throughout; 1.9 percent fine, soft, diffuse, iron stains within peds, 5YR 5/5; strongly effervescent; abrupt wavy boundary.

Bw2--14 to 38 centimeters; 7.5YR 7/4, 7.5YR 4/6 moist; no rock fragments; moderate medium to coarse subangular blocky structure; soft, very sticky, very plastic; many (5) very fine roots throughout, common (2) medium roots in between plates; many (7+) very fine to medium dendritic tubular pores throughout; few very fine, faint, diffuse, white coats and masses on the faces of peds; thin clay coats lining pores; strongly effervescent; clear wavy boundary.

By--38 to 61 centimeters; 7.5YR 5/4, 7.5YR 4/4 moist; no rock fragments; moderate medium to coarse subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine roots throughout; many (5+) very fine dendritic tubular pores throughout; 5 percent very fine gypsum masses, soft, white, distinct; 10 to 15 percent fine gypsum spar, distinct; 10 percent clay very fine blocks; slightly effervescent.

Cr--61 to 72+ centimeters; gypsiferrous claystone; fissile/platy; lithogenic structures; some gypsum recrystallization; slightly effervescent.

Site GB 33 Location: 755753E, 4037788N **Buckwheat**: Absent

Av--0 to 4 centimeters; 7.5YR 5/4, 7.5YR 4/4 moist; 20 percent fine gravel; moderate thick platy structure; soft, nonsticky, nonplastic; common (1) very fine roots throughout; many (10) very fine vesicular, very fine and fine irregular pores throughout; 15 percent finely disseminated carbonate or silt throughout matrix, faint, diffuse, 7.5YR 5/4; very fine silt coats throughout, faint; strongly effervescent; abrupt wavy boundary.

Bk--4 to 11 centimeters; 7.5YR 4/6, 7.5YR 4/6 moist; 25 percent fine gravel; moderate medium to coarse subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine, common (1) fine and medium roots throughout; common (3) very fine, common (1) fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate and very fine filaments throughout matrix and on roots; silt coats lining pores and on faces of peds, faint, discontinuous; strongly effervescent; clear wavy boundary.

Bky1--11 to 40 centimeters; 7.5YR 4/6, 7.5YR 4/6 moist; 5 percent very fine to medium gravel; strong medium subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine, common (2) fine, common (1) roots throughout; common (1) very fine, common (2) medium dendritic tubular pores throughout; 5 percent finely disseminated carbonate; 0.9 percent very fine gypsum throughout matrix, white, soft; strongly effervescent; clear wavy boundary.

Bky2--40 to 60+ centimeters; 5YR 5/6, 5YR 4/6 moist; 20 percent fine gravel; moderate fine to medium angular blocky structure; soft, nonsticky, nonplastic; common (1) fine roots throughout; common (1) fine dendritic tubular pores throughout; 5 percent finely disseminated carbonate throughout; 2 percent very fine gypsum snowballs, white, irregular, soft; strongly effervescent.

Site GB 34 Location: 755823E, 4037845N **Buckwheat**: Absent

A--0 to 3 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 15 percent angular paragravel; strong medium platy structure; soft, nonsticky, nonplastic; no roots; many (10) very fine vesicular and

irregular pores throughout; biological soil crust; slightly effervescent; very abrupt smooth boundary.

AC--3 to 10 centimeters; 5YR 7/4, 5YR 6/4 moist; 50 percent angular paragravel; moderate thick platy structure; soft, nonsticky, nonplastic; common (1) fine roots throughout; many (10) very fine vesicular and irregular pores throughout; 50 percent fine mottles, 5YR 7/6, 5YR 8/2; slightly effervescent; clear smooth boundary.

Cr--10 to 56+ centimeters; 5YR 7/4, 5YR 6/4 moist; no rock fragments; massive; weak medium subangular blocky structure; soft, nonsticky, nonplastic; common (5) very fine, common (1) medium roots throughout; common (1) very fine irregular and dendritic tubular pores throughout; 50 percent medium mottles, 5YR 7/6, 5YR 8/2; weathered gypsiferrous sediments; slightly effervescent.

Note: There is no Gold Butte Site #35. This site was originally planned using GIS and remote sensing data, but was cancelled because its soil geomorphic setting would not have contributed useful information to this project and/or presented logistical challenges. Site approval (archaeological survey) and field data collection had already begun in the study area when this site was cancelled, thus it remains as an apparent but artificial gap in our list of study sites.

Site GB 36 Location: 755887E, 4037850N **Buckwheat**: Absent

A--0 to 2 centimeters; 5YR 7/4, 5YR 5/4 moist; no rock fragments, 20 percent biological soil crust; strong thin platy structure; soft, nonsticky, slightly plastic; no roots; common (3 to 5) very fine vesicular, many (10+) very fine to fine irregular pores throughout; 20 to 25 percent fine and medium gypsum masses and nodules filling pores and on the bottom of plates; gypsum spar filling pores; 3 to 10 centimeter gypsum blocks and thin white gypsum crust with/without silty vesicles; slightly effervescent; very abrupt wavy boundary.

By--2 to 8 centimeters; 5YR 6/3, 5YR 5/4 moist; no rock fragments; moderate medium subangular blocky structure; soft, slightly sticky, very plastic; no roots; skeletal pores throughout; very fine gypsum spar throughout, gypsum coating pores; very fine (less than 1 millimeter) gypsum spar; very fine (less than 1 millimeter) red clay fragments; slightly effervescent; abrupt wavy boundary.

C/Cr--8 to 40+ centimeters; 5YR 6/4, 5YR 4/4 moist; zones of silty rocks; massive and coarse subangular blocky structure; soft to extremely hard, nonsticky, nonplastic; common (1) very fine and medium roots throughout; skeletal pores throughout; gypsum spar and clay throughout; relict oxidized root zones (iron stains) along root traces, 10 centimeter; silty clay lining many very fine roots, 10YR 8/6; 10 to 20 centimeter gypsum blocks; less than 2 centimeter gypsum spar; slightly effervescent.

Site GB 37 Location: 755821E, 4037830N Buckwheat: Present

Av--0 to 3 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 1.9 percent mixed gravel; soft, slightly sticky, moderately plastic; no roots; many (5+) very fine vesicular and irregular pores throughout; 1 centimeter thick coalesced gypsum masses and pendants on the bottom of plates, continuous; strongly effervescent; very abrupt smooth boundary.

By--3 to 14 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; no rock fragments; moderate thin platy parting to weak fine subangular blocky structure; soft, nonsticky, nonplastic; common (3) fine, common (2) medium roots throughout; many (5+) very fine dendritic tubular, many (10+) very fine skeletal pores throughout; few faint, diffuse, yellow, red and brown ferrous iron stains along root traces; very fine and fine gypsum spar throughout; rare very thin (0.5 millimeter) silt coats on some ped surfaces; slightly effervescent; clear wavy boundary.

C--14 to 29 centimeters; 5YR 5/3, 5YR 4/4 moist; no rock fragments; weak fine subangular blocky structure; soft, slightly sticky, very plastic; many (5+) very fine, common (2) medium roots throughout; skeletal pores throughout; 10 to 25 percent white to grey gypsum spar; predominant brown to red clay; common, faint, diffuse yellow, red and brown ferrous iron stains; fine and medium gypsum spar throughout; fine gypsum coating pores; slightly effervescent; gradual smooth boundary.

Cr--29 to 50+ centimeters; 5YR 6/4, 5YR 4/4 moist; dense clay-rich mixed sediment; predominantly fissile and platy; some gypsum veins and sparry gypsum crystals throughout; common (2) very fine and fine roots throughout; slightly effervescent.

(end of Gold Butte profiles)

III. Bitter Spring Soil Profile Descriptions

Site BS 00 Location: N/A Buckwheat: Absent

A--0 to 3 centimeters; 10YR 8/2, 10YR 7/2 moist; strong thick platy structure; slightly hard, nonsticky, slightly plastic; no roots; common (1) medium dendritic tubular pores, common (3) fine irregular pores, many (5) very fine vesicular pores throughout; 20 percent sugary gypsum coats throughout, distinct, 10YR 8/2; low bulk density, very white; strongly effervescent; abrupt smooth boundary.

Byk--3 to 16 centimeters; 2.5YR 8/2, 2.5YR 7/3 moist; moderate medium and moderate coarse subangular blocky structure; soft, slightly sticky, slightly plastic; common (3) very fine and common (1) coarse roots throughout; common (3) very fine dendritic tubular pores throughout; 30 percent finely disseminated carbonate throughout, faint, diffuse, 2.5YR 8/2; 30 percent finely disseminated gypsum throughout, faint, diffuse, 2.5YR 8/2; 10 percent fine gypsum crystals throughout, faint, sharp, colorless to 2.5YR 8/2; 1 percent fine, white, round gypsum masses throughout, distinct, sharp; 1 to 2 percent yellow (2.5Y 8/4) masses, faint, diffuse mottles throughout; violently effervescent; clear smooth boundary.

C--16 to 50+ centimeters; 2.5YR 8/2, 2.5YR 8/3 moist; strong coarse angular blocky structure; soft, moderately sticky, moderately plastic; 10 percent, 5Y 7/4 mottles; 1 percent, 2/5Y 7/6 mottles; 30 percent coarse gypsum crystals throughout, prominent, sharp, colorless; violently effervescent.

Site BS 01 Location: 718468E, 4024423N Buckwheat: Present

A--0 to 4 centimeters; 10YR 8/1, 10YR 7/3 moist; moderate thin to thick platy structure; soft, slightly sticky, slightly plastic; no roots; many (5+) very fine irregular and common (3) very fine vesicular pores; 2 to 5 percent very fine and fine white masses throughout, distinct, sharp, hard gypsum or calcium carbonate; 25 percent finely disseminated carbonate throughout, distinct, 10YR 8/1; violently effervescent; abrupt wavy boundary.

By--4 to 18 centimeters; 10YR 8/1, 10YR 7/3 moist; strong medium and coarse subangular blocky structure; moderately hard, slightly sticky, very plastic; common (1) fine roots throughout; many (5) very fine irregular pores throughout; 35 percent gypsum crystals throughout, sharp; finely disseminated carbonate throughout, distinct, 10YR 8/1; violently effervescent; abrupt smooth boundary.

C--18 to 48+ centimeters; 10YR 7/3, 10YR 7/3 moist; strong coarse subangular blocky structure; slightly hard, moderately sticky, very plastic; common (3) very fine, and common (1) coarse

roots throughout; common (3) fine and coarse dendritic tubular pores throughout; 5 percent coarse, irregular, prominent, yellow (10YR 7/6) mottles throughout; 5 to 10 percent fine through coarse gypsum crystals throughout, prominent, sharp, clear to white; variegated gypsiferous silt and clay, not indurated, but very denser, almost massive; violently effervescent.

Site BS 02 Location: 718460E, 4024430N Buckwheat: Absent

Av--0 to 10 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 60 percent limestone gravel through cobble as pavement; moderate medium and coarse subangular blocky parting to moderate thick platy structure; soft, slightly sticky, slightly plastic; common (3) very fine roots throughout; common (3) very fine vesicular, and many (5) very fine irregular pores throughout; 10 percent finely disseminated carbonate throughout, faint, diffuse, 7.5YR 7/3; 10 percent silt coats throughout, faint, diffuse, 7.5YR 7/3; violently effervescent; abrupt wavy boundary.

By-- 10 to 26 centimeters; 7.5YR 7/3, 10YR 6/4 moist; 5 percent fine limestone gravel; moderate coarse subangular blocky structure; slightly hard, slightly sticky, slightly plastic; common (1) very fine and fine roots throughout; common (3) very fine dendritic tubular; 2 percent very fine gypsum masses, white, distinct, sharp; 30 percent gypsum crystals, possibly recrystallized from rock, white, prominent, clear; violently effervescent; clear wavy boundary.

C-- 26 to 63+ centimeters; 2.5YR 7/3, 2.5YR 6/4 moist; massive parting to moderate fine through coarse angular blocky structure; slightly hard, moderately sticky, moderately plastic; common (1) fine and common (2) medium roots throughout; common (3) and many (5) medium irregular pores throughout; 10 percent 10YR 7/6, clear, irregular mottles throughout; 30 percent gypsum crystals throughout, clear to grey, prominent, sharp; mottled, bedded gypsum clay and silt; skeletal between crystals; violently effervescent.

Site BS 03 Location: 718340E, 4024455N Buckwheat: Absent

AC--0 to 10 centimeters; 7.5YR 6/3, 7.5YR 5/4 moist; strong coarse subangular blocky structure; loose to moderately hard, slightly sticky, very plastic; no roots; common (1) very fine dendritic tubular, and many (10) very fine irregular pores throughout; 5 percent fine gypsum throughout, prominent, white, sharp; 10 percent finely disseminated carbonate throughout, faint, diffuse; top 0.5 centimeters of surface crust is soft; strongly effervescent; clear wavy boundary.

C1--10 to 33 centimeters; 7.5YR 6/3, 7.5YR 5/4 moist; strong coarse angular blocky structure; hard, slightly sticky, very plastic; common (1) very fine roots throughout; common (3) fine and medium dendritic tubular pores throughout; grey 5 to 10Y 5/6 mottles; 5 to 10 percent gypsum crystals throughout, sharp, prominent; 2 to 5 percent fine gypsum masses throughout, white,

round, prominent, clear; 5 percent carbonate and/or gypsum coats on faces of peds, distinct, diffuse, irregular; strongly effervescent; clear smooth boundary.

C2--33 to 50+ centimeters; 7.5YR 6/3, 7.5YR 5/4 moist; moderate fine and medium subangular blocky structure; soft, moderately sticky, moderately plastic; no roots; common (3) very fine dendritic tubular pores; 15 percent 7.5YR 8/1 gypsum, and 2 percent 7.5YR 5/2 mottles throughout; 2 to 5 percent fine and medium gypsum crystals throughout, distinct, sharp; noneffervescent.

Site BS 04 Location: 718305E, 4025525N **Buckwheat**: Absent

Av--0 to 6 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; 15 percent limestone gravel; strong very thick platy structure; slightly hard, nonsticky, slightly plastic; common (2) very fine roots throughout; many (10) very fine and many (5) fine to medium vesicular pores; 20 percent finely disseminated carbonates and silt throughout, distinct, diffuse, 7.5YR 7/3; well developed pavement; violently effervescent; abrupt wavy boundary.

Bk1--6 to 21 centimeters; 7.5YR 6/4, 7.5YR 5/6 moist; 35 percent gravel; moderate medium subangular blocky structure; loose to soft, nonsticky, slightly plastic; common (3) very fine, common (2) fine, common (1) medium roots throughout; common (2) fine dendritic tubular pores throughout; 30 percent finely disseminated carbonate throughout, distinct, diffuse, 7.5 YR 7/3, on rock fragments; 0.9 percent very fine carbonate masses throughout, prominent, white, round; thick 0.5 centimeter pendants on rock fragments; rock fragments and pendants may be reworked; violently effervescent; abrupt wavy boundary.

Bk2--21 to 42+ centimeters; 7.5YR 6/6, 7.5YR 5/6 moist; 75 percent gravel; massive parting to moderate fine subangular blocky structure; loose to soft, moderately sticky, moderately plastic; common (1) very fine and coarse roots throughout; 2 percent fine carbonate masses throughout, white, round, sharp; 0.1 to 0.5 centimeter pendants on all rocks; finely disseminated carbonate on faces of peds, thin, discontinuous; hard color match, extremely gravelly horizon; violently effervescent.

Site BS 05 Location: 718170E, 4025450N **Buckwheat**: Present

A--0 to 4 centimeters; 7.5YR 7/2, 7.5YR 7/2 moist; 25 percent rock fragments; moderate fine platy structure; loose to soft, moderately sticky, very plastic; common (1) very fine and fine roots throughout; common (4) fine vesicular, and common (1) fine dendritic tubular pores; 15 percent finely disseminated carbonate and silt throughout, faint, diffuse, 7.5YR7/2, concentrated in upper

0.5 centimeters; sediment composed largely of round gypsum crystals; eroded, reworked; violently effervescent; abrupt wavy boundary.

C--4 to 35+ centimeters; 10YR 7/3, 10YR 6/3 moist; moderate fine through coarse subangular blocky; soft to slightly hard, moderately sticky, very plastic; common (2) fine and common (1) medium roots throughout; many (5) very fine and fine dendritic tubular pores throughout; 10 percent clay and gypsum mottles, 10YR 6/8; 10 percent clay and gypsum mottles, 10YR 8/2; 30 percent clay and gypsum mottles, 10YR 7/2; 5 percent oxidized (ferric) iron masses, 10YR 6/8, in fine root pores in some parts of the horizon; 50 percent gypsum masses and crystals, white, throughout matrix and filling cracks; very gypsiferous claystone, possibly a past paleosol; violently effervescent.

Site BS 06 Location: 718025E, 4025410N Buckwheat: Present

A--0 to 8 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 15 percent claystone gravel; weak medium subangular blocky structure; soft, slightly sticky, moderately plastic, common (1) fine and medium roots throughout; common (3) very fine dendritic tubular, and many (5) very fine irregular pores throughout; 10 to 20 percent finely disseminated carbonate throughout, white, distinct, diffuse; 2 percent gypsum masses throughout, white, fine, distinct, sharp; top 0.5 centimeters is physical crust and platy; violently effervescent; abrupt smooth boundary.

ByC--8 to 27 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 50 percent fine to medium claystone paragravel; strong medium to coarse subangular blocky structure; slightly hard, slightly sticky, moderately plastic; many (5) very fine, and common (3) fine roots throughout; common (1) very fine, and common (3) fine dendritic tubular pores throughout; 20 percent very fine and fine gypsum crystals throughout, distinct, sharp; violently effervescent; gradual smooth boundary.

Cr--27 to 52+ centimeters; 2.5YR 7/2, 2.5YR 6/3 moist; no rock fragments; strong coarse angular blocky structure; hard; common (3) fine, and common (1) medium roots throughout; scarcely, unaltered claystone; lithogenic; 0 to 50 percent fine gypsum crystals throughout; distinct, sharp, prominent; fissile blocky; violently effervescent.

Site BS 07 Location: 717890E, 4025350N Buckwheat: Absent

Av--0 to 4 centimeters; 10YR 7/3, 10YR 6/4 moist; 65 percent gravel and cobble; strong very thick platy structure; slightly hard, slightly sticky, moderately plastic; many (5) very fine roots throughout; many (10+) fine and medium vesicular pores throughout; 50 percent silt coats throughout, distinct, lining pores, 10YR 7/3; very fine gypsum fragments throughout; violently effervescent; abrupt wavy boundary.

Bk1--4 to 13 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 40 percent gravel; weak fine platy parting to moderate fine subangular blocky structure; loose to soft, nonsticky, slightly plastic; many (5) very fine roots throughout; 20 percent finely disseminated carbonate throughout, faint, diffuse, 10YR 7/3; fine to medium reworked calcium carbonate nodules or fragments; violently effervescent; clear smooth boundary.

Bk2--13 to 34 centimeters; 7.5YR 7/3, 7.5YR 6/4 moist; 35 percent gravel; strong fine and medium subangular blocky structure; soft, slightly sticky, slightly plastic; many (5) very fine, and common (1) fine roots throughout; common (4) very fine, common (1) fine and medium dendritic tubular pores throughout; 2 percent very fine and fine gypsum masses throughout, prominent, soft, round, white; 5 to 10 percent finely disseminated carbonate filaments throughout, diffuse, distinct, white; violently effervescent; clear smooth boundary.

Bk3-- 34 to 52+ centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 35 percent gravel; moderate fine subangular blocky structure; loose, slightly sticky; common (1) fine roots throughout; skeletal; 2 percent very fine and fine gypsum masses throughout, prominent, soft, round, white; 5 to 10 percent finely disseminated carbonate filaments throughout, diffuse, distinct, white; coarsely gravelly; violently effervescent.

Site BS 08 Location: 718957E, 4024500N Buckwheat: Present

Avk--0 to 5 centimeters; 5YR 7/4, 5YR 5/6 moist; 4 percent fine limestone gravel; strong thick platy structure; slightly hard, slightly sticky, moderately plastic; common (1) very fine roots throughout; many (10+) very fine vesicular and irregular pores throughout; 15 percent finely disseminated carbonate on faces of peds, white, prominent, diffuse, irregular; 0.5 centimeter calcium carbonate pendants under plates and at horizon boundary, white, continuous, prominent, diffuse; violently effervescent; abrupt wavy boundary.

C-- 3 to 30 centimeters; 2.5YR 4/4, 2.5YR 4/6 moist; no rock fragments; moderate medium angular blocky structure; hard, moderately sticky, very plastic; common (3) very fine and fine, common (2) medium, common (1) coarse roots throughout; common (4) very fine dendritic tubular pores throughout; 5 percent fine calcium carbonate or gypsum masses on faces of peds and on the bottoms of lithogenic claystone fragments, irregular; 5 percent fine calcium carbonate or gypsum coats on faces of peds and on the bottoms of lithogenic claystone fragments, irregular; blocks are less angular and have more calcium carbonate and/or gypsum coats than Cr; violently effervescent; clear wavy boundary.

Cr-- 30 to 40+ centimeters; 2.5YR 4/4, 2.5YR 4/6 moist; no rock fragments, strong medium angular blocky structure; extremely hard, moderately sticky, very plastic; no roots; structural pores; 1 to 5 percent gypsum spar or veins throughout, lithogenic blocks, not pendants; thinly bedded red claystone or siltstone, blocky to fissile, no soil structure; violently effervescent.

Site BS 09 Location: 718750E, 4024260N Buckwheat: Absent

A--0 to 4 centimeters; 10YR 7/3, 10YR 6/3 moist; 35 percent limestone gravel; moderate thick platy structure; loose to soft, moderately sticky, very plastic; common (2) very fine roots throughout; common (3) fine vesicular, common (1) fine dendritic tubular, many (5) fine irregular pores throughout; 20 percent finely disseminated carbonate or silt coats throughout, brown 10 YR 7/3, distinct, clear; 2 percent very fine and fine calcium carbonate or gypsum masses throughout, prominent, soft, white, round; violently effervescent; abrupt wavy boundary.

C--4 to 14 centimeters; 10YR 7/3, 10YR 7/3 moist; no rock fragments; moderately fine subangular blocky structure; soft, moderately sticky, very plastic; common (3) very fine and fine roots throughout; common (3) very fine dendritic tubular pores throughout; 5 percent very fine and fine finely disseminated carbonate and/or silt throughout, soft, white, prominent, mostly lithogenic concretions; strongly effervescent; abrupt irregular boundary

Cr--14 to 29+ centimeters; 7.5YR 8/2, 7.5YR 7/3 moist, and GLEY1 7/10, GLEY1 7/10 moist; no fragments; massive; soft to extremely hard, moderately sticky, very plastic; common (3) fine, common (1) medium roots throughout; structural pores throughout; jumbled siltstone and claystone, variable depth, irregular contacts, green bed is 3 centimeters thick; strongly effervescent.

Site BS 10 Location: 718440E, 4024370N Buckwheat: Absent

Av--0 to 3 centimeters; 7.5YR 4/4, 7.5YR 5/4 moist; 50 percent very fine to coarse limestone gravel; moderate coarse subangular blocky parting to moderate very thick platy structure; slightly hard, moderately sticky, moderately plastic; common (1) very fine roots throughout; many (10) very fine and fine, many (5) medium vesicular pores throughout; 25 percent finely disseminated carbonate and/or silt throughout, diffuse, faint, irregular, 7.5YR 4/4; gravelly on surface; violently effervescent; abrupt smooth boundary.

Bk1--3 to 9 centimeters; 5YR 6/4, 5YR 4/4 moist; 25 percent fine limestone gravel to cobble; strong coarse subangular blocky structure; slightly hard, moderately sticky, very plastic; common (3) very fine, common (1) coarse roots throughout; common (3) very fine irregular, common (1) medium dendritic tubular pores throughout; 2 percent fine to coarse masses throughout, soft, white, prominent, sharp, <0.2 to 0.5 centimeters; 10 percent finely disseminated carbonate throughout, faint, diffuse; gravelly to cobbly; violently effervescent; clear smooth boundary.

Bk2--9 to 17+ centimeters; 7.5YR 6/4, 7.5YR 4/6 moist; 50 percent fine to coarse gravel, fine cobbles; weak fine subangular blocky structure; soft, nonsticky, slightly plastic; common (3) fine

roots throughout; too loose to determine pores; 2 percent very fine to fine calcium carbonate masses throughout, white, prominent, sharp; 15 percent finely disseminated carbonate throughout, white, faint, diffuse; gravelly; violently effervescent.

Site BS 11 Location: 718950E, 4024520N Buckwheat: Absent

Av--0 to 4 centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 25 percent gravel; moderate very thick platy structure; soft, nonsticky, nonplastic; common (4) very fine roots throughout; many (10+) fine vesicular pores; 20 percent finely disseminated carbonate, 7.5YR 7/3; 5 percent eroded calcite, sand-sized nodules/gravels; top 0.5 centimeters is physical crust and differentiated; violently effervescent; abrupt wavy boundary.

C1--4 to 46 centimeters; 7.5YR 7/4, 7.5YR 5/4 moist; 30 percent gravel; single grained parting to weak coarse subangular blocky structure; soft to loose, nonsticky, nonplastic; many (5) very fine, common (3) fine, common (2) medium, common (1) coarse roots throughout; common (1) fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate; fine to medium gypsum crystal nests, prominent, abrupt; still stratified; strongly effervescent; clear wavy boundary.

C2--46 to 64+ centimeters; 7.5YR 7/3, 7.5YR 5/4 moist; 15 percent gravel; strong medium subangular blocky structure; soft, nonsticky, nonplastic; common (1) very fine and fine roots throughout; common (1) fine dendritic tubular pores throughout; 10 percent finely disseminated carbonate; 5 percent fine gypsum masses, white; strongly effervescent.

Site BS 12 Location: 718000E, 4025400N Buckwheat: Present

A--0 to 2 centimeters; 10YR 8/1, 10YR 7/2 moist; 30 percent rock fragments; strong thick platy structure; slightly hard, very sticky, very plastic; no roots; many (5) very fine, common (2) fine, common (1) medium dendritic tubular, many (5) very fine to fine vesicular, common (3) fine irregular pores throughout; 10 percent very fine gypsum crystals throughout, white, distinct, sharp; 20 percent finely disseminated carbonate throughout, faint, diffuse; thickness varies from 0.2 to 2.5 centimeters; violently effervescent; very wavy boundary.

BC--2 to 12 centimeters; 10YR 8/1, 10YR 6/2 moist; no rock fragments; strong thin platy structure; hard, moderately sticky, very plastic; common (1) very fine and fine roots throughout; structural pores throughout; 5 percent isolated mottles throughout, 10YR 8/4, 10YR 6/6 moist; 2 percent fine to medium oxidized (ferric) iron masses throughout, clear, prominent, 7.5YR 6/6, 7.5YR 4/6 moist; 2 to 5 percent fine to medium gypsum crystals in nests throughout, irregular, diffuse, sharp; looks like structure is lithogenic; 5 to 10 percent calcium carbonate coats and

finely disseminated carbonate on faces of peds, white, discontinuous, distinct, diffuse; violently effervescent; clear wavy boundary.

Cr--12 to 50+ centimeters; 10YR 8/1, 10YR 5/2 moist; no rock fragments; massive; rigid; many (5) very fine, common (3) fine, common (1) coarse roots throughout; structural pores between rocks; 50 percent mottles, 2.5YR 8/1, 2.5YR 6/2 moist; 2 percent fine to medium oxidized (ferric) iron masses throughout, clear, prominent, 7.5YR 5/6, 7.5YR 4/6 moist; 2 to 5 percent gypsum crystals on faces of peds and in between cracks, prominent, sharp; mix of fissile/blocky siltstone or claystone in massive cobbly limestone, both of which have lamina of discontinuous gypsum (gypsum is 1 to 3 centimeters thick); violently effervescent.

Site BS 13 Location: 718020E, 4025450N Buckwheat: Present

Av--0 to 4 centimeters; 10YR 7/2, 10YR 6/3 moist; 25 percent gravel; strong thick to very thick platy structure; soft, slightly sticky, slightly plastic; no roots; many (5) very fine to fine irregular, and fine vesicular pores throughout; 20 percent finely disseminated carbonate and or silt throughout, faint, diffuse, 10YR 7/2; 0.5 centimeter cyano pinnacles with wormy structure; violently effervescent; abrupt wavy boundary.

By1--4 to 11 centimeters; 10YR 7/2, 10YR 6/3 moist; 20 percent gypsum and shale gravel; moderate thin platy parting to moderate coarse subangular blocky structure; soft, moderately sticky, moderately plastic; common (3) very fine roots throughout; many (5) very fine to fine dendritic tubular pores throughout; 5 to 10 percent very fine gypsum crystals throughout, distinct, sharp; 10 percent finely disseminated carbonate and silt throughout, faint, diffuse, 10YR 7/2; violently effervescent; abrupt smooth boundary.

By2--11 to 21 centimeters; 10YR 7/2, 10YR 6/3 moist; 5 percent gravel; strong fine to coarse angular blocky structure; soft to slightly hard, slightly sticky, very plastic; common (3) very fine and fine roots throughout; many (10) very fine irregular, common (1) fine dendritic tubular pores throughout; 1 to 2 percent very fine oxidized (ferric) iron masses in lithogenic plates, prominent, 5YR 4/6; 20 percent very fine gypsum crystals throughout, distinct, sharp; 2 to 5 percent finely disseminated carbonate as discontinuous coats on plates, white, distinct, diffuse; difficult color match; violently effervescent; abrupt smooth boundary.

Cr-- 21 to 48+ centimeters; 10YR 6/3, 10YR 6/3 moist; strong thin platy structure (lithogenic); extremely hard, very sticky, very plastic; many (5) very fine to fine, common (1) coarse roots throughout; structural pores between plates; 1 to 2 percent very fine oxidized (ferric) iron masses in lithogenic plates and lining root traces, prominent, 5YR 4/6; 2 to 5 very fine gypsum crystals on faces of lithogenic plates and in cracks, distinct, sharp; violently effervescent.

Site BS 14 Location: 718070E, 4025425N Buckwheat: Present

A--0 to 10 centimeters; 10YR 7/2, 10YR 5/4 moist; 50 percent gravel; strong thin to very thick platy structure; soft, nonsticky, nonplastic; no roots; many (10+) very fine irregular, and common (1) fine vesicular pores throughout; 50 to 75 percent very fine gypsum crystals throughout; 10 percent finely disseminated carbonate throughout, white, faint, diffuse; thickness varies from 3 to 10 centimeters; violently effervescent; very irregular boundary.

Cr-- 10 to 43+ centimeters; 10YR 8/1, 10YR 5/2 moist; 95 percent gravel; massive; loose, rigid for rock fragments, nonsticky, nonplastic; many (5+) very fine, common (1) fine and medium roots in cracks and along faces of peds; 15 percent very fine gypsum crystals on rock faces, distinct, sharp; possible finely disseminated carbonate on rock faces, white, diffuse, discontinuous, very very thin; violently effervescent.

Site BS 15 Location: 7180879E, 4025425N Buckwheat: Present

A--0 to 9 centimeters; 10YR 7/2, 10YR 6/3 moist; 30 percent gravel; strong thick platy structure; soft, nonsticky, slightly plastic; common (3) very fine roots throughout; common (2) fine dendritic tubular pores throughout; 20 percent finely disseminated carbonate and silt throughout, distinct, clear, 10YR 7/2; violently effervescent; abrupt wavy boundary.

ByC--9 to 44 centimeters; 10YR 7/3, 10YR 6/3 moist; 5 percent gravel; moderate medium subangular blocky structure; soft to slightly hard, nonsticky, nonplastic; many (5) very fine, common (1) fine, common (2) medium roots throughout; many (5 to 10) fine and medium irregular pores throughout; 5 to 20 percent fine to medium gypsum crystals on surfaces of rock fragments, distinct, sharp; 5 to 20 percent very fine gypsum masses on surfaces of rock fragments throughout, white, distinct, sharp; tough match for color; violently effervescent; abrupt irregular boundary

Cr--44+ centimeters; 2.5Y 6/3, 2.5Y 5/3 moist; massive; calcareous claystone; violently effervescent.

Site BS 16 Location: 718145E, 4025405N Buckwheat: Present

AC--0 to 6 centimeters; 10YR 8/3, 10YR 7/3 moist; no rock fragments; strong medium subangular blocky structure; hard, very sticky, very plastic; common (2) very fine roots

throughout; many (5+) very fine dendritic tubular pores throughout; 2 to 5 percent fine to medium gypsum masses throughout, white, prominent, sharp; 50 percent clay coating sand grains, lining pores, and on faces of peds throughout; strongly effervescent; clear smooth boundary.

C1--6 to 36 centimeters; 10YR 8/3, 10YR 7/3 moist; no rock fragments; strong coarse angular blocky structure; fissile, very sticky, very plastic; common (4) very fine roots throughout; common (3) fine dendritic tubular pores throughout; 2 to 5 percent fine to medium gypsum masses throughout, white, prominent, sharp; 20 to 30 percent fine gypsum crystals, faint, 10YR 8/3; 50 percent clay coating sand grains, lining pores, and on faces of peds throughout; common coarse root traces with decaying organic matter throughout the horizon; strongly effervescent; clear wavy boundary.

2C2--36 to 53+ centimeters; 2.5Y 7/3, 2.5Y 8/1 moist; no rock fragments; strong fine to medium angular blocky structure (lithogenic); fissile, very sticky, very plastic; common (1) medium roots throughout; many (5) very fine dendritic tubular and irregular pores throughout; 15 percent mottles, 2.5Y 7/8; 15 percent mottles 5YR 7/4; 70 percent mottles 5Y 8/2; 15 percent finely disseminated carbonate on faces of peds; 20 percent very fine gypsum crystals in cracks and on faces of peds; significant original lithogenic with approximately 30 percent gypsum crystals; strongly effervescent.

Site BS 17 Location: 718230E, 4025485N **Buckwheat**: Absent

A--0 to 3 centimeters; 5YR 6/3, 5YR 5/4 moist; 50 percent gravel; strong thick platy structure; loose to soft, slightly sticky, very plastic; no roots; many (5) very fine to fine dendritic tubular and irregular pores; finely disseminated carbonate or gypsum throughout, faint, distinct, diffuse; violently effervescent; abrupt wavy boundary.

ByC--3 to 26 centimeters; 7.5YR 6/3, 7.5YR 5/3 moist; no rock fragments; strong coarse subangular blocky structure; moderately hard, slightly sticky, moderately plastic; common (3) very fine roots throughout; many (5) very fine to fine dendritic tubular pores throughout; 15 percent gypsum crystals, masses and filaments throughout, white, prominent; violently effervescent; abrupt wavy boundary.

2Cr--26 to 45+ centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; no rock fragments; strong fine to medium angular blocky structure (lithogenic); rigid, very sticky, very plastic; no roots, structural pores throughout; 5 percent mottles as isolated masses, 5Y 8/4; 10 percent mottles as thin beds within matrix, 10YR 8/2; manganese oxide coats on faces of rock fragments, 7.5YR 3/1, black, shiny metallic; 2.5 percent very fine gypsum crystals and masses on faces of peds, white, prominent; violently effervescent.

Site BS 18 Location: 717845E, 4025325N Buckwheat: Absent

A--0 to 7 centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 25 percent gravel to cobble; moderate thin platy parting to moderate fine to medium subangular blocky structure; soft, nonsticky, moderately plastic; common (3) fine roots throughout; common (2) fine dendritic tubular pores throughout; 15 percent finely disseminated carbonate throughout, distinct, diffuse, 7.5YR 7/3; 2 to 5 percent very fine white masses throughout, prominent, sharp; violently effervescent; abrupt smooth boundary.

By--7 to 48+ centimeters; 7.5YR 7/3, 7.5YR 6/3 moist; 1.9 percent limestone gravel; strong medium to coarse angular blocky structure; soft, moderately sticky, very plastic; many (8) very fine, common (2) fine roots throughout; many (5) very fine, common (2) fine and medium dendritic tubular pores throughout; 15 percent calcium carbonate or gypsum masses and coats, irregular; finely disseminated carbonate as masses and lining pores throughout, white, diffuse, prominent, sharp; dry color very hard to match; violently effervescent.

Site BS 19 Location: 717915E, 4025415N Buckwheat: Present

A--0 to 2 centimeters; 7.5YR 7/2, 7.5YR 6/3 moist; 20 percent gravel; strong very thick platy structure; slightly hard, moderately sticky, very plastic; no roots; many (10) very fine dendritic tubular and irregular, common (2) very fine, common (1) medium dendritic tubular pores throughout; 2 to 5 percent fine gypsum crystals throughout, distinct, very abrupt; 50 percent finely disseminated carbonate and silt throughout, 7.5YR 7/2, faint, clear; violently effervescent; very wavy boundary.

By--2 to 14 centimeters; 10YR 7/3, 10YR 7/3 moist; no rock fragments; moderate coarse subangular blocky structure; loose to soft, moderately sticky, very plastic; common (2) very fine roots throughout; common (1) medium dendritic tubular pores throughout; 15 percent gypsum spar and/or fragments; very difficult color match; 50 percent fine (2 to 5 millimeter) clay blocks; violently effervescent; abrupt wavy boundary.

Cr--14 to 57+ centimeters; 2.5Y 7/2, 2.5Y 6/2 moist; no rock fragments; strong coarse angular blocky structure; friable, very sticky, very plastic; common (1) fine, medium, coarse roots throughout; common (1) medium dendritic tubular pores throughout; 10 percent clay laminae, irregular, iatrogenic, 7.5YR 4/4; 0.5 to 1 centimeter gypsum spar in veins and cavities, lithogenic; violently effervescent.

Site BS 20 Location: 718890E, 4024465N Buckwheat: Absent

A--0 to 10 centimeters; 10YR 7/3, 10YR 4/4 moist; 50 percent limestone gravel; moderate thin parting to very thick platy structure; soft, slightly sticky, slightly plastic; many (10+) very fine roots throughout; common (4) very fine dendritic tubular, many (5) very fine vesicular pores throughout; 20 percent very fine finely disseminated carbonate on bottoms of peds and rock fragments throughout, white, soft, irregular, distinct; violently effervescent; abrupt wavy boundary.

Byk1-- 0 to 34 centimeters; 10YR 7/4, 10YR 5/4 moist; no rock fragments; moderate fine to medium subangular blocky structure; soft, slightly sticky, slightly plastic; common (4) very fine, common (2) fine, common (1) medium roots throughout; many (5) very fine, common (2) fine, common (1) medium dendritic tubular pores throughout; 20 percent very fine finely disseminated carbonate on bottoms of peds and rock fragments throughout, white, soft, irregular, distinct; 0.9 percent very fine gypsum masses throughout, white, distinct; violently effervescent; abrupt wavy boundary.

Byk2--34 to 50 centimeters; 10YR 8/3, 10YR 6/3 moist; 1.9 percent gravel; moderate medium to coarse subangular blocky structure; soft, slightly sticky, moderately plastic; many (5) very fine to fine roots throughout; many (5) very fine, common (4) fine and medium dendritic tubular pores throughout; 10 percent fine to medium gypsum masses or gypsum sediment rock fragments, white, prominent, hard to tell if these are mottles (litho chromatic) or truly pedogenic; violently effervescent; clear wavy boundary.

C -- 50 to 69+ centimeters; 2.5YR 8/3, 2.5YR 7/3 moist; no rock fragments; massive; soft, slightly sticky, slightly plastic; common (1) fine roots throughout; skeletal pores; 50 percent gypsum spar; slightly effervescent.

Site BS 21 Location: 718845E, 4024420N Buckwheat: Absent

Av--0 to 5 centimeters; 7.5YR 7/4, 7.5YR 4/6 moist; 50 percent gravel; moderate very thick platy structure; slightly hard, very sticky, very plastic; common (3) very fine roots throughout; many (5) very fine vesicular, common (1) fine and medium dendritic tubular pores throughout; 10 percent finely disseminated carbonate throughout, distinct, diffuse, 7.5YR 7/4; extremely gravelly discontinuous Av with gravel; abrupt wavy boundary.

Bk--5 to 23 centimeters; 7.5YR 6/4, 7.5YR 5/4 moist; 75 percent gravel; weak fine subangular blocky structure; loose, nonsticky, nonplastic; common (2) very fine, common (1) fine roots throughout; no pores; 10 percent finely disseminated carbonate; 5 percent very fine, soft to hard, round masses, hard to tell because of rock fragments; extremely gravelly, loose and soft; not

sieved, most rock fragments are petrocalcic fragments; brecciated stage III; cannot remove calcium carbonate chunks without changing the soil; very wavy boundary

Bkm--23+ centimeters; 5YR 8/3, 5YR 7/4 moist; no rock fragments; massive; very rigid; no roots; no pores; 90 percent indurated calcium carbonate throughout, white, prominent; clasts with indurated pendants, mini pisoliths.

Site BS 22 Location: 718565E, 4024370N **Buckwheat**: Absent

Av--0 to 6 centimeters; 5YR 6/6, 2.5YR 4/6 moist; 10 to 50 percent limestone fine gravel to stones; strong thick to very thick platy structure; slightly hard, slightly sticky, slightly plastic; no roots; many (10+) very fine and fine vesicular pores throughout; 20 percent finely disseminated carbonate and/or silt coats throughout, distinct, diffuse, irregular, 5YR 6/6; violently effervescent; abrupt wavy boundary.

Bk1--6 to 20 centimeters; 5YR 5/6, 5YR 4/6 moist; 0 to 5 percent fine to medium limestone gravel; strong medium to coarse angular blocky structure; slightly hard, nonsticky, slightly plastic; common (3) very fine, common (2) fine to medium roots throughout; common (3) fine, common (2) medium dendritic tubular pores throughout; 35 percent finely disseminated carbonate on faces of peds throughout, distinct, clear, white; less than 5 percent filaments; 0.9 percent very fine gypsum masses throughout, white; violently effervescent; gradual smooth boundary.

Bk2--20 to 37 centimeters; 2.5YR 6/4, 5YR 4/4 moist; no rock fragments; moderate fine to medium angular blocky structure; soft, slightly sticky, slightly plastic; many (5) very fine to fine roots throughout; many (5) very fine to fine dendritic tubular pores throughout; 20 to 25 percent finely disseminated carbonate throughout, distinct, white, clear; 1.9 percent filaments; 0.9 percent very fine gypsum masses throughout, white; violently effervescent; abrupt smooth boundary.

Cr --37 to 66+ centimeters; 5YR 5/4, 5YR 4/6 moist; no rock fragments; strong medium to coarse angular blocky structure (iatrogenic); hard to rigid; common (1) very fine roots throughout; structural pores throughout; 5 to 20 percent medium (0.5 centimeter) gypsum crystals throughout, spar, prominent, sharp, clear, 5YR 5/4; fissile to blocky, gypsiferous siltstone, thinly bedded (approximately 1 centimeter), relatively unaltered; strongly effervescent.

Site BS 23 Location: 718820E, 4024955N Buckwheat: Absent

A--0 to 7 centimeters; 10YR 8/2, 10YR 8/2 moist; 10 percent gypsum gravel; moderate fine subangular blocky structure; soft, very friable, moderately sticky, very plastic; no roots; many (10+) very fine irregular pores throughout; 10 percent very fine gypsum spar and/or masses, white, faint; thin physical gypsum crust 0 to 1 centimeters thick; violently effervescent; abrupt wavy boundary.

By--7 to 26 centimeters; 10YR 8/2, 10YR 8/2 moist; no rock fragments; strong fine to coarse subangular blocky structure; soft, very friable, very sticky, very plastic; common (2) very fine, common (1) medium roots throughout; many (5) very fine irregular, common (1) fine dendritic tubular pores throughout; 10 percent fine to coarse laminae, prominent, platy, 10YR 7/8, iatrogenic; 20 percent medium to coarse gypsum nests throughout, prominent, white to grey; strongly effervescent; clear wavy boundary.

2ByC--26 to 38 centimeters; 10YR 7/3, 10YR 6/3 moist; no rock fragments; strong fine to coarse subangular blocky structure; very friable, very sticky, very plastic; no roots; common (1) fine dendritic tubular pores throughout; 30 percent blocky clay with 10YR 7/8 iron laminae throughout; 20 percent oxidized (ferric) iron laminae throughout (iatrogenic), continuous, prominent; 35 percent gypsum spar throughout, white, irregular, prominent; strongly effervescent; abrupt smooth boundary.

2C--38 to 50+ centimeters; 2.5YR 6/6, 2.5YR 6/6 moist; no rock fragments; lithogenic; blocky claystone with iron laminae, all iatrogenic structure; very friable, very sticky, very plastic; no roots; no pores; 20 percent oxidized (ferric) iron laminae throughout (iatrogenic), continuous, prominent; all clay and iron laminae; strongly effervescent.

Site BS 24 Location: 718955E, 4024550N Buckwheat: Absent

Av--0 to 2 centimeters; 5YR 5/6, 2.5YR 4/6 moist; 30 percent limestone gravel; moderate thick platy structure; soft, moderately sticky, moderately plastic; no roots; common (4) very fine vesicular, many (5) very fine irregular pores throughout; 15 percent fine finely disseminated carbonate and silt throughout, faint, soft, irregular, diffuse, 5YR 5/6; violently effervescent; abrupt smooth boundary.

By1--2 to 9 centimeters; 5YR 5/6, 2.5YR 4/6 moist; 45 percent limestone gravel; soft, moderately sticky, moderately plastic; common (4) very fine roots throughout; many (5+) fine irregular pores throughout; 10 percent very fine gypsum crystals throughout, prominent, 5YR 8/2; 25 percent coarse gypsum rock fragments with clay, hard crystals; violently effervescent; abrupt smooth boundary.

By2--9 to 35 centimeters; 2.5YR 5/4, 2.5YR 4/6 moist; no rock fragments; moderate fine subangular blocky structure parting to lithic plates; soft, slightly sticky, slightly plastic; common (3) very fine roots throughout; many (5+) very fine to fine irregular pores throughout; 50 percent red gypsum spar and roses throughout, prominent, hard; 4.9 percent fine gypsum snowballs throughout; little altered siltstone and claystone; violently effervescent; abrupt smooth boundary.

C--35 to 57+ centimeters; 2.5YR 5/4, 2.5YR 4/6 moist; no rock fragments; lithogenic angular blocky structure; hard, very sticky, very plastic; no roots; many (5+) fine irregular pores throughout; 50 percent gypsum; 50 percent blocky red claystone; violently effervescent.

Site BS 25 Location: 718950E, 4024590N Buckwheat: Absent

Av--0 to 5 centimeters; 5YR 6/4, 5YR 5/6 moist; 35 percent limestone fine gravel to coarse cobble; strong very thick platy structure; slightly hard, slightly sticky, moderately plastic; common (3) very fine roots throughout; many (5) very fine vesicular, common (2) fine dendritic tubular pores throughout; 15 percent finely disseminated carbonate and silt throughout, 5YR 6/4; 0.9 percent gypsum nests and masses throughout, faint, soft, irregular, white, diffuse; violently effervescent; abrupt wavy boundary.

Bk1--5 to 13 centimeters; 5YR 6/4, 5YR 4/6 moist; 9 percent gravel; moderate medium subangular blocky structure; soft, nonsticky, nonplastic; common (3) very fine, common (1) fine roots throughout; many (5) very fine dendritic tubular pores throughout; 10 percent medium (5 millimeter) calcium carbonate masses throughout, soft, white; 10 percent finely disseminated carbonate throughout, faint, diffuse, 5YR 6/4; violently effervescent; abrupt wavy boundary.

Bk2--13 to 33 centimeters; 5YR 7/4, 5YR 6/4 moist; 4.9 percent gravel; strong medium subangular blocky structure; soft, nonsticky, slightly plastic; common (3) very fine, common (1) fine roots throughout; common (2) very fine, common (1) fine dendritic tubular pores throughout; 30 percent finely disseminated carbonate; 10 percent calcium carbonate masses, soft; 0.9 percent very fine gypsum snowballs, soft, white, faint, diffuse; violently effervescent; abrupt smooth boundary.

Bk3-- 33 to 55+ centimeters; 5YR 5/6, 5YR 4/6 moist; no rock fragments; strong medium to coarse subangular blocky structure; soft, slightly sticky, moderately plastic; common (3) fine roots throughout; common (2) medium dendritic tubular pores throughout; 20 percent white masses in root fillings and veins throughout, 5YR 8/2, prominent, irregular; finely disseminated carbonate; 20 percent coarse calcium carbonate masses, irregular; violently effervescent.

Site BS 26 Location: 718390E, 4024500N Buckwheat: Absent

AC--0 to 10 centimeters; 7.5YR 6/3, 7.5YR 5/3 moist; no rock fragments; strong coarse subangular blocky structure; hard, moderately sticky, very plastic; no roots; common (3) fine dendritic tubular; 2 percent fine to medium gypsum masses, prominent, white, sharp, round; 10 percent finely disseminated carbonate throughout, faint, diffuse; top 0.25 to 0.5 centimeters is crust; violently effervescent; clear smooth boundary.

C1-- 10 to 28 centimeters; 7.5YR 6/3, 7.5YR 5/4 moist; no rock fragments; strong coarse angular blocky structure; friable, slightly sticky, very plastic; common (1) fine roots throughout; many (5) fine irregular, common (1) medium dendritic tubular pores throughout; 5 percent mottles, gley 1 5/10Y; 5 percent medium gypsum crystals throughout, prominent, sharp; 5 to 10 percent very fine to fine gypsum masses and filaments throughout, white, prominent, sharp; 10 percent finely disseminated carbonate on faces of peds, distinct, diffuse, white; violently effervescent; abrupt smooth boundary.

C2-- 28 to 52+ centimeters; 7.5YR 6/3, 7.5YR 5/4 moist; no rock fragments; moderate fine to coarse subangular blocky structure; slightly hard, friable, slightly sticky, very plastic; no roots; common (4) very fine irregular pores throughout; 2 percent mottles, gley 1 8/10Y; 10 percent very fine gypsum coats and crystals throughout, distinct, clear, irregular; 10 percent medium to coarse gypsum crystals throughout, prominent, sharp; violently effervescent.

Site BS 27 Location: 718483E, 4024436N **Buckwheat:** Absent

A--0 to 3 centimeters; 2.5Y 8/2, 2.5Y 7/3 moist; no rock fragments; strong thick to very thick platy structure; slightly hard, very sticky, very plastic; no roots; many (5) fine vesicular, common (3) medium irregular pores throughout; 20 percent fine to medium gypsum crystals under plates, white, prominent; 10 percent finely disseminated carbonate throughout, faint, diffuse, white; violently effervescent; very wavy boundary.

Byk--3 to 10 centimeters; 2.5Y 8/3, 2.5Y 7/3 moist; no rock fragments; moderate fine to medium subangular blocky parting to weak thick platy structure; soft to hard, moderately sticky, moderately plastic; common (2) very fine roots throughout; common (4) very fine dendritic tubular and irregular pores throughout; 30 percent fine to medium gypsum crystals throughout, white, prominent; violently effervescent; abrupt smooth boundary

C--10 to 35+ centimeters; 2.5Y 7/3, 2.5Y 6/3 moist; no rock fragments; strong coarse angular blocky structure; friable, very sticky, very plastic; no roots; many (5+) fine to medium irregular pores, skeletal between gypsum crystals; 2 percent fissile, blocky, claystone with gypsum lenses, greenish, 10YR 5/6; 20 percent medium to coarse gypsum crystals throughout, clear to white, prominent; bright pink in cracks throughout; violently effervescent.

Site BS 28 Location: 718842E, 4024242N Buckwheat: Absent

A--0 to 9 centimeters; 7.5YR 8/3, 7.5YR 7/3 moist; 5 percent rock fragments, 0.9 percent limestone and fine gypsum; moderate thick to very thick platy structure; soft, nonsticky, slightly plastic; many (5) very fine roots throughout; many (10) very fine irregular, many (5) very fine vesicular pores throughout; 20 percent finely disseminated carbonate, silt coats and carbonate filaments throughout, faint, 7.5YR 8/3 to white; 20 percent gypsum crystals and very fine coats around ped faces throughout, distinct, hard, 7.5YR 8/3 to grey; 2 percent very fine gypsum masses throughout, white, prominent, abrupt; gypsum and cyanobacteria crust, part biological soil crust mostly physical; strongly effervescent; abrupt wavy boundary.

By--9 to 21 centimeters; 7.5YR 8/3, 7.5YR 5/3 moist; no rock fragments; moderate fine subangular blocky structure; slightly hard to hard, nonsticky, slightly plastic; many (10) very fine, common (2) fine, common (1) medium roots throughout; common (1) fine dendritic tubular, common (3) fine to medium irregular pores throughout; 5 percent very fine para-rock fragments of claystones or siltstone with weathered gypsum; 20 percent very fine to fine gypsum crystals throughout, distinct; 5 percent finely disseminated carbonate and silt coats on surface of peds and rock and siltstone fragments; slightly effervescent; clear wavy boundary.

2C--21 to 46 centimeters; 7.5YR 7/3, 7.5YR 4/4 moist; no rock fragments; moderate fine subangular blocky structure; soft, slightly sticky, very plastic; many (5) very fine, common (3) fine, common (1) medium roots throughout; many (5) very fine irregular, common (1) fine dendritic tubular pores throughout; 20 percent hard fragments of clayey, silty gypsum; 40 percent gypsum crystals, recrystallized as coats and spar filling pores and veins, prominent, grey to white; 40 percent clay and silt fragments; very strongly effervescent; gradual smooth boundary.

2Cr--46 to 58+ centimeters; 7.5YR 7/3, 7.5YR 4/4 moist; no rock fragments; strong medium subangular blocky structure; soft, moderately sticky, very plastic; common (2) fine and medium, common (1) coarse roots throughout; many (5) very fine irregular pores throughout, skeletal; 10 to 50 percent large fragments of claystone with gypsum throughout; 30 percent gypsum crystals, recrystallized as coats and spar filling pores and veins, prominent, grey to white; 50 percent fissile claystone; very strongly effervescent.

Site BS 29 Location: 718860E, 4024515N Buckwheat: Present

Av--0 to 3 centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; 35 percent limestone gravel; strong thick platy structure; soft, moderately sticky, slightly plastic; no roots; many (10) very fine vesicular, many (5) very fine irregular pores throughout; 10 percent very fine finely disseminated carbonate and silt throughout, soft, faint, irregular, 7.5YR 8/2; violently effervescent; very wavy boundary.

By--3 to 10 centimeters; 7.5YR 8/2, 7.5YR 7/2 moist; 35 percent very fine, rounded gypsum gravel; weak thin platy structure; loose, slightly sticky, very plastic; many (6) very fine roots throughout; no pores described; too loose to determine concentrations, mostly subrounded weathered gypsum; strongly effervescent; abrupt wavy boundary.

C1--10 to 35 centimeters; 7.5YR 8/2, 7.5YR 8/2 moist; no rock fragments; moderate medium subangular blocky structure; soft, moderately sticky, very plastic; many (5) very fine roots throughout; common (2) fine, common (1) coarse dendritic tubular pores throughout, skeletal; laminae across horizon, 10YR 6/4 to 10YR 6/6, lithogenic, prominent, distinct; few clear sedimentary structures, but no clear pedogenic features either; strongly effervescent; clear wavy boundary.

2Cr--35 to 49+ centimeters; gley 1 5/10Y; no rock fragments; no structure; common (1) very fine roots throughout; many (5+) medium irregular pores throughout, skeletal; 35 percent coarse lithogenic gypsum spar nests and crystals throughout, clear, prominent; claystone with 35 percent coarse (0.5 to 2 centimeters) gypsum spar; strongly effervescent.

(end of Bitter Spring profiles)